200 resultados para PCR-RFLP assay
Resumo:
国家自然科学基金(项目编号:39730290)
Resumo:
特异引物对(TOX 1P/1F;TOX 2P/2F)用于检测微囊藻毒素合成酶基因mcyB片段在38种水华蓝藻中的分布情况。结果显示,所有能产生微囊藻毒素的微囊藻都有特异扩增条带,非产毒株则没有。几种常规的毒性检测方法验证了PCR方法所获结果的准确性。本研究发展了以全细胞PCR法检测mcyB片断,说明全细胞PCR检测法适用于不同来源的蓝藻材料。结果证明以DNA为基础鉴别产毒和非产毒微囊藻及其他水华蓝藻的方法是可行和实用的。
Resumo:
针对集胞藻PCC6803的1927个待定编码基因进行了两侧序列的PCR扩增。4个亚株基因组在。sll0267-sll0268-sll0269区域的 PCR扩增产物与 Kazusa DNA数据存在差异。以叶绿素合成基因chlH和chlL为例,显示三片段连接PCR产物可有效用于集胞藻6803基因组定向插入失活。
Resumo:
应用RAPD-PCR的方法,选用24个随机引物,分析来自不同地区的7株微囊藻的基因组多态性.结果显示,Microcystis.viridis及M.wesenbergii明显与M.aeruginosa区分开.M.aeruginosa分为两个可视为不同种的异源分类单位.作为对照的Anabaenasp.7120与其他微囊藻株表现出完全不同的基因型及更远的遗传距离.此项研究表明,以基因型而不是表现型为基础,分析蓝藻种内及种间区别是可能的.因此,为解决蓝藻分类问题,特别是在种和属的水平上,提供了重要的线索.结合正在
Resumo:
应用RAPD-PCR的方法,选用24个随机引物,分析来自不同地区的7株微囊藻的基因组多态性。结果显示,Microcystis.viridis及M.wesenbergii明显与M.aeruginosa区分开。M.aeruginosa分为两个可视为不同种的异源分类单位。作为对照的Anabaena sp.7120与其他微囊藻株表现出完全不同的基因型及更远的遗传距离。 此项研究表明,以基因型而不是表现型为基础,分析蓝藻种内及种间区别是可能的。因此,为解决蓝藻分类问题,特别是在种和属的水平上,提供了重要的线索。结合
Resumo:
PCR技术在环境生物学上的应用邱东茹,吴振斌(中国科学院水生生物研究所武汉430072)水是许多疾病的传播途径之一,为监测水环境、水处理系统和供水系统的卫生学质量,需要对水中的病原菌和病毒作检测,由于直接检查水中各种病原微生物方法复杂,如有些细菌很难...
PCR-DGGE Fingerprinting Analysis of Plankton Communities and Its Relationship to Lake Trophic Status
Resumo:
Plankton communities in eight lakes of different trophic status near Yangtze, China were characterized by using denatured gradient gel electrophoresis (DGGE). Various water quality parameters were also measured at each collection site. Following extraction of DNA from plankton communities, 16S rRNA and 18S rRNA genes were amplified with specific primers for prokaryotes and eukaryotes, respectively; DNA profiles were developed by DGGE. The plankton community of each lake had its own distinct DNA profile. The total number of bands identified at 34 sampling stations ranged from 37 to 111. Both prokaryotes and eukaryotes displayed complex fingerprints composed of a large number of bands: 16 to 59 bands were obtained with the prokaryotic primer set; 21 to 52 bands for the eukaryotic primer set. The DGGE-patterns were analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Temperature, pH, alkalinity, and the concentration of COD, TP and TN were strongly correlated with the DGGE patterns. The parameters that demonstrated a strong correlation to the DGGE fingerprints of the plankton community differed among lakes, suggesting that differences in the DGGE fingerprints were due mainly to lake trophic status. Results of the present study suggest that PCR-DGGE fingerprinting is an effective and precise method of identifying changes to plankton community composition, and therefore could be a useful ecological tool for monitoring the response of aquatic ecosystems to environmental perturbations.
Resumo:
An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.
Resumo:
To explore the relationships between community composition and the environment in a reservoir ecosystem, plankton communities from the Three Gorges Reservoir Region were studied by PCR-denaturing gradient gel electrophoresis fingerprinting. Bacterial and eukaryotic operational taxonomic units (OTUs), generated by DGGE analysis of the PCR-amplified 16S and 18S rRNA genes, were used as surrogates for the dominant "biodiversity units". OTU composition among the sites was heterogeneous; 46.7% of the total bacteria] OTUs (45) and 64.1% of the eukaryotic OTUs (39) were identified in less than half of the sampling sites. Unweighted pair group method with arithmetic averages (UPGMA) clustering of the OTUs suggested that the plankton communities in the Xiangxi Rive sites were not always significantly different from those from the Yangtze River sites, despite clear differences in their environmental characterizations. Canonical correspondence analysis (CCA) was applied to further investigate the relationships between OTU composition and the environmental factors. The first two CCA ordination axes suggested that the bacterial community composition was primarily correlated with the variables of NO3--N, dissolved oxygen (DO), and SiO32--Si, whereas, the eukaryotic community was mainly correlated with the concentrations of DO, PO43--P, and SiO32--Si.
Resumo:
m Background: Cross-species nuclear transfer has been shown to be a potent approach to retain the genetic viability of a certain species near extinction. However, most embryos produced by cross-species nuclear transfer were compromised because that they were unable to develop to later stages. Gene expression analysis of cross-species cloned embryos will yield new insights into the regulatory mechanisms involved in cross-species nuclear transfer and embryonic development. Results: A novel gene, K31, was identified as an up-regulated gene in fish cross-subfamily cloned embryos using SSH approach and RACE method. K31 complete cDNA sequence is 1106 base pairs (bp) in length, with a 342 bp open reading frame (ORF) encoding a putative protein of 113 amino acids (aa). Comparative analysis revealed no homologous known gene in zebrafish and other species database. K31 protein contains a putative transmembrane helix and five putative phosphorylation sites but without a signal peptide. Expression pattern analysis by real time RT-PCR and whole-mount in situ hybridization (WISH) shows that it has the characteristics of constitutively expressed gene. Sub-cellular localization assay shows that K31 protein can not penetrate the nuclei. Interestingly, over-expression of K31 gene can cause lethality in the epithelioma papulosum cyprinid (EPC) cells in cell culture, which gave hint to the inefficient reprogramming events occurred in cloned embryos. Conclusion: Taken together, our findings indicated that K31 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos and over-expression of K31 gene can cause lethality of cultured fish cells. To our knowledge, this is the first report on the determination of novel genes involved in nucleo-cytoplasmic interaction of fish cross-subfamily cloned embryos.
Resumo:
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4-N and As were found to be significantly related (P < 0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.
Resumo:
The aim of the present study was to purify the common native carp growth hormone (ncGH), produce monoclonal antibodies (mAbs) to common native carp growth hormone (ncGH), and further enhance the sensitivity of enzyme-linked immunosorbent assays (ELISA) for ncGH. Additionally, we investigated changes in serum ncGH levels in carps raised in different environmental conditions. The recombinant grass carp (Ctenopharyngodon idella) growth hormone was purified and used as antigen to immunize the rabbit. The natural ncGH was isolated from the pituitaries of common carp. SDS-PAGE and Western blot utilizing the polyclonal anti-rgcGH antibody confirmed the purification of ncGH from pituitaries. Purified ncGH was then used as an immunogen in the B lymphocyte hybridoma technique. A total of 14 hybridoma cell lines (FMU-cGH 1-14) were established that were able to stably secrete mAbs against ncGH. Among them, eight clones (FMU-cGH1-6, 12 and 13) were successfully used for Western blot while nine clones (FMU-cGH 1-7, 9 and 10) were used in fluorescent staining and immunohistochemistry. Epitope mapping by competitive ELISA demonstrated that these mAbs recognized five different epitopes. A sensitive sandwich ELISA for detection of ncGH was developed using FMU-cGH12 as the coating mAb and FMU-cGH6 as the enzyme labeled mAb. This detection system was found to be highly stable and sensitive, with detection levels of 70 pg/mL. Additionally, we found that serum ncGH levels in restricted food group and in the net cage group increased 6.9-and 5.8-fold, respectively, when compared to controls, demonstrating differences in the GH stress response in common carp under different living conditions.
Resumo:
To distinguish the cytoplasm of Danio rerio from that of Gobiocypris rarus, we cloned G. rarus COXI and constructed cytoplasmic molecular markers at the high identity domains of COXI by mutated primer PCR (MP-PCR for short). Then Sybr Green I was used to detect the single amplicon. As a result, we succeeded in getting the cytoplasmic molecular markers, G.M COXI and Z.M COXI, by MP-PCR strategy. They were used to detect the sperm-derived mtDNA in the sexual hybrid embryos (D. rerio female x G. rarus male) before the sphere stage. In the present study, all results demonstrate that MP-PCR approach and Sybr Green I detection are feasible to construct the molecular markers to identify genes that shared high identity.
Resumo:
In this study, an alternative splicing transcript GtH-alpha 291 was identified by RT-PCR, which is 291 nt and exists not only in the pituitary but also in the ovary in common carp Cyprinus carpio. The analysis of GtH-alpha 291 amino acid sequence by the SignalP server predicted that the 'missing segment' might characterize as a signal peptide. In the secretion experiment, GtH-alpha 357 subunit could be secreted out of HeLa cells while GtH-alpha 291 could not, which confirmed the prediction. Co-immunoprecipitation assay proved that GtH-alpha 291 subunit is able to interact with both FSH-beta and LH-beta as GtH-alpha 357 does. This is the first report concerning an alternative splicing transcript of a GtH alpha subunit. Further studies are necessary to elucidate the specific role of this variant in the regulation of gonadal development and sexual maturation. (c) 2007 The Authors.
Resumo:
A short-hairpin RNA (shRNA) expression system, based on T7 RNA polymerase (T7RP) directed transcription machinery, has been developed and used to generate a knock down effect in zebrafish embryos by targeting green fluorescent protein (gfp) and no tail (ntl) mRNA. The vector pCMVT7R harboring T7RP driven by CMV promoter was introduced into zebrafish embryos and the germline transmitted transgenic individuals were screened out for subsequent RNAi application. The shRNA transcription vectors pT7shRNA were constructed and validated by in vivo transcription assay. When pT7shGFP vector was injected into the transgenic embryos stably expressing T7RP, gfp relative expression level showed a decrease of 68% by analysis of fluorescence real time RT-PCR. As a control, injection of chemical synthesized siRNA resulted in expression level of 40% lower than the control when the injection dose was as high as 2 mu g/mu l. More importantly, injection of pT7shNTL vector in zebrafish embryos expressing T7RP led to partial absence of endogenous ntl transcripts in 30% of the injected embryos when detected by whole mount in situ hybridization. Herein, the T7 transcription system could be used to drive the expression of shRNA in zebrafish embryos and result in gene knock down effect, suggesting a potential role for its application in RNAi studies in zebrafish embryos.