112 resultados para PARTIAL ANHYSTERETIC REMANENCE
Resumo:
Using a recently developed technique to extract jellyfish venom from nematocysts, the present study investigated the hemolytic activity of Cyanea nozakii Kishinouye nematocyst venom on chicken erythrocytes. Venom extract caused a significant concentration-dependent hemolytic effect. The extract could retain its activity at -80 degrees C but was unstable when kept at 4 degrees C and -20 degrees C for 2 days. The hemolytic activity was inhibited by heating within the range of 37-100 degrees C. The extract was active over a pH range of 5.0-8.63 and the pH optima for the extract was 7.8. Incubation of the venom with sphingomyelin specially inhibited hemolytic activity by up to 70%. Cu2+ and Mn2+ greatly reduced the hemolytic activity while Mg2+, Sr2+ and Ba2+ produced a relatively low inhibiting effect on the hemolytic activity. Treatment with Ca2+ induced a concentration-dependent increase in the hemolytic activity. In the presence of 5 mM EDTA, all the hemolytic activity was lost, however, the venom containing 1.5 mM EDTA was stable in the long-term storage. PLA(2) activity was also found in the nematocyst venom of C. nozakii. These characteristics provide us a fundamental knowledge in the C. nozakii nematocyst venom which would benefit future research. (C) 2010 Published by Elsevier Ltd.
Resumo:
Based on the 16S mitochondrial partial gene sequences of 29 genera, containing 26 from Oedipodidae and one each from Tanaoceridae, Pyrgomorphidae and Tetrigidae (as outgroups), the homologus sequences were compared and phylogenetic analyses were performed. A phylogenetic tree was inferred by neighbor-joining (NJ). The results of sequences compared show that: (i) in a total of 574 bp of Oedipodidae, the number of substituted nucleotides was 265 bp and the average percentages of T, C, A and G were 38.3%, 11.4%, 31.8% and 18.5%, respectively, and the content of A+T (70.1%) was distinctly richer than that of C+G (29.9%); and (ii) the average nucleotide divergence of 16S rDNA sequences among genera of Oedipodidae were 9.0%, among families of Acridoidea were 17.0%, and between superfamilies (Tetrigoidea and Acridoidea) were 23.9%, respectively. The phylogenetic tree indicated: (i) the Oedipodidae was a monophyletic group, which suggested that the taxonomic status of this family was confirmed; (ii) the genus Heteropternis separated from the other Oedipodids first and had another unique sound-producing structure in morphology, which is the type-genus of subfamily Heteropterninae; and (iii) the relative intergeneric relationship within the same continent was closer than that of different continents, and between the Eurasian genera and the African genera, was closer than that between Eurasians and Americans.
Resumo:
There are four chapters in this dissertation. The first chapter briefly synthesizes the basic theories, methods and present-day applying situation of environmental magnetism. The second chapter probes into the magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea and its response to marine environmental changes, using the muddy sediment of Core YSDP103 formed in the shelf since about 13 ka BP. The third chapter illustrates the high-resolution early diagenetic processes by investigating the rapidly deposited muddy sediments during the last 6 ka in Cores SSDP-102 and SSDP-103 from the near-shore shelf of Korea Strait. The fourth chapter presents the results of detailed rock magnetic investigation of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea in an attempt to provide environmental magnetic evidence for the provenance of the fine-grained deposit. Core YSDP103 was retrieved in the muddy deposit under the cold eddy of the southeastern South Yellow Sea, and the uppermost 29.79 m core represents the muddy sediments formed in the shelf since about 13 ka BP. The lower part from 29.79 to 13.35 m, called Unit A2, was deposited during the period from the post-glacial transgression to the middle Holocene (at about 6 ~(14)C ka BP) when the rising sea level reached its maximum, while the upper part above 13.35 m (called Unit Al) was deposited in a cold eddy associated with the formation of the Yellow Sea Warm Current just after the peak of post-glacial sea level rise. For the the uppermost 29.79 m core, detailed investigation of rock-magnetic properties and analyses of grain sizes and geochemistry were made. The experimental results indicate that the magnetic mineralogy of the core is dominated by magnetite, maghemite and hematite and that, except for the uppermost 2.35 m, the magnetic minerals were subject to reductive diagenesis leading to significant decline of magnetic mineral content and the proportion of low-coercivity component. More importantly, ferrimagnetic iron sulphide (greigite) is found in Unit A2 but absent in Unit Al, suggesting the control of marine environmental conditions on the magnetic mineral diagenesis. Magnetic parameters show abrupt changes across the boundary between the Unit Al and A2, which reflects a co-effect of environmental conditions and primary magnetic components of the sediments on the diagenesis. Alternating zones of high and low magnetic parameters are observed in Unit A2 of Core YSDP103, which is presumably due to periodic changes of the concentration and/or grain size of magnetic minerals carried into the study area. Cores SSDP-102 and SSDP-103, two studied sediment cores from the Korea Strait contain mud sequences (14 m and 32.62 m in thickness) that were deposited during the last 6,000 years. Analyses of grain sizes and geochemistry of the cores have demonstrated that the sediments have uniform lithology and geochemical properties, however, marked down-core changes in magnetic properties suggest that diagenesis has significantly impacted the magnetic properties. An expanded view of early diagenetic reactions that affect magnetic mineral assemblages is evident in these rapidly deposited continental shelf sediments compared to deep-sea sediments. The studied sediments can be divided into four descending intervals, based on magnetic property variations. Interval 1 is least affected by diagenesis and has the highest concentrations of detrital magnetite and hematite, and the lowest solid-phase sulfur contents. Interval 2 is characterized by the presence of paramagnetic pyrite and sharply decreasing magnetite and hematite concentrations, which suggest active reductive dissolution of detrital magnetic minerals, the absolute minimum abundance of magnetite is reached at the end of this interval. Interval 3 is marked by a progressive loss of hematite with depth, and at the base of this interval, 82% to 88% of the hematite component was depleted and the bulk magnetic mineral concentration was reduced to the lowest value in the entire studied mud section. Interval 4 has an increasing down-core enhancement of authigenic greigite, which is interpreted to have formed due to arrested pyritization resulting from consumption of pore water sulfate with depth. This is the first clear demonstration from an active depositional environment for a delay of thousands of years for acquisition of a magnetization carried by greigite. This detailed view of diagenetic processes in continental shelf sediments suggests that studies of geomagnetic field behavior from such sediments should be conducted with care. Paleoceanographic and paleoclimatic studies based on the magnetic properties of shelf sediments with high sedimentation rates like those in the Korea Strait are also unlikely to provide a meaningful signature associated with syn-depositional environmental processes. The rock magnetic properties of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea, an area surrounded by sands, are investigated with a view to providing information on the sediment provenance. Multiple magnetic parameters such as magnetic susceptibility (%), anhysteretic remanent magnetization (ARM), saturation rernanent magnetization (SIRM), coercivities of SIRM (Her), and S ratios (relative abundance of low-coercivity magnetic minerals) are measured for all 179 surface samples, and partial representative samples are examined for their magnetic hysteresis parameters, temperature-dependence of magnetic susceptibility and x-ray diffraction spectra. Our research indicates that the magnetic mineralogy is dominated by magnetite with a small amount of hematite and is primarily of pseudo-single domain (PSD) to multidomain (MD) nature with a detrital origin. In the surface sediments, the granulometry of magnetic fractions is basically independent of grain sizes of the sediment containing the magnetic grains, and the composition of magnetic minerals remains almost homogeneous, that is, with a relatively constant ratio of low to high coercivity fraction throughout the area. The magnetic concentration in the study area generally decreases to the east or southeast accompanied by magnetic-particle fining to the east or to the northeast. The geographic pattern of magnetic properties is most reasonably explained by a major source of sediment jointly from the erosion of the old Huanghe River deposit and the discharge of the Changjiang River. The rock magnetic data facilitate understanding of the transport mechanism of fine-grained sediments in the outer shelf of the East China Sea.
Resumo:
Chinese eolian deposits are especially suitable for the studies of paleoclimatic changes, environmental magnetism and remanence acquisition mechanisms. In the past two decades, many studies have documented their magnetic properties. However, some important problems, such as the origin of magnetic minerals, the mechanisms for enhancing magnetic susceptibility and the lock-in effect, remain debatable. Therefore, it is essential to detail the rock-magnetic properties of the eolian deposits. This study shows thermomagnetic analyses, petrographic measurements and soil chemistry methods can be combined to obtain a better understanding of the sequence of magnetic mineral alterations during thermal treatment and of the pedogenic mechanism responsible for the susceptibility enhancement. This helps to further develop the interpretation of paleoclimate records in the Holocene eolian deposits along a NW-SE transect of the loess plateau. A partial heating/cooling method and X-ray diffraction (XRD) analysis were performed on representative samples of the present-day loess, in order to investigate mineralogical changes during thermal treatment. The temperature-dependent susceptibility (TDS) and XRD results show complex alteration of magnetic phases during heating and cooling. The 300 ℃ susceptibility hump in heating curves might be due to the production of maghemite from less magnetic lepidocrocite during heating. Goethite is transformed into hematite when heating to above 300 ℃. The susceptibility decrease from 300 ℃ to 450 ℃ can be interpreted as the conversion of maghemite to hematite. This thermal instability makes it possible to quantatively estimate the maghemite contribution to the pedogenically-enhanced susceptibility in loess or paleosols. Minor occurrence of thermally-stable maghemite in the present-day loess is possible; nevertheless, the TDS measurements show that the degree of the thermally-induced alteration is closely related to pedogenesis. The TDS measurement and XRD analysis results demonstrate that although magnetite and hematite both exist in the Holocene loess eolian deposits and their modern source area, magnetite is the predominant contributor to magnetic susceptibility. Both magnetite and hematite are the primary carriers of the remanent magnetization. Fine-grained maghemite, mainly produced by pedogenesis, is significantly responsible for enhancement of the magnetic susceptibility in the Chinese loess and paleosols. Since the degree of oxidation of magnetite grains depends on climate, the presence of maghemite has paleoclimatic significance, and variations in climate could be reflected as variations in the amount of low-temperature oxidation. If that is the case, the TDS curves can be used to compare the effects of climate at different sampling sites. The TDS results along the studied NW-SE transect suggest that stronger pedogenesis results in higher content of maghemite and greater susceptibility decrease during thermal treatment. This behavior seems to indicate that the final product of pedogenic magnetite in Chinese loess and paleosols is maghemite, which makes significant contributions to the enhanced magnetic susceptibility of Chinese eolian deposits. It is interesting to note that the 510 ℃ Hopkinson/alteration peak is larger in the present-day loess than in the black loam for each section. Obiviously, the Hopkinson/alteration peak of the Holocene eolian deposits is closely related to the degree of pedogenesis, which is a function of climate, and thus the peak itself could be a useful climate indicator. There are three effects that may be important in producing this trend. First, low-temperature oxidation preferentially affects the finer single-domain magnetites responsible for the Hopkinson peak, which is therefore suppressed in the more oxidized loams. Second, the possible production of uniaxial magnetite with shape anisotropy can also lead to a relatively muted Hopkinson peak. There is, additionally, a third alternative, and the one preferred here, that the natural alteration processes involved in pedogenic susceptibility enhancement have probably depleted the supply of iron-bearing precursor phases, so that less new magnetite is formed on heating. In summary, the TDS method is very reliable and highly sensitive in detecting magnetic phase changes in eolian deposits during thermal treatment, which are closely related to pedogenic processes. Thus, the studied NW-SE transect clearly exhibits paleoclimatically-induced mineral- and rock-magnetic variations. It is suggested that TDS can be used as a new method for the analysis of pedogenesis and climatic change.
Resumo:
The ignition processes for the catalytic partial oxidation of methane (POM) to synthesis gas over oxidic nickel catalyst (NiO/Al2O3), reduced nickel catalyst (Ni-0/Al2O3), and Pt-promoted oxidic nickel catalyst (Pt-NiO/Al2O3) were studied by the temperature-programmed surface reaction (TPSR) technique. The complete oxidation of methane usually took place on the NiO catalyst during the CH4/O-2 reaction, even with a pre-reduced nickel catalyst, and Ni-0 is inevitably first oxidized to NiO if the temperature is below the ignition temperature. It is above a certain temperature that Ni-0 is formed again, which leads to the start of the POM. The POM can be initiated at a much lower temperature on a Pt-NiO catalyst because of Pt promotion of the reduction of NiO. The POM in a fluidized bed can be easily initiated due to the addition of Pt.
Resumo:
The deposition of carbon on catalysts during the partial oxidation of methane to syngas has been investigated in a fluidized bed. It was found that the relative rate of carbon deposition follows the order NiP > >d > Pt, Rh. Although the rate of carbon deposition in the fluidized bed was much lower than that in the fixed bed, carbon deposition could still be detected in the fluidized bed if a CH4/O-2 ratio in greater than 2.3 was used.
Resumo:
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.
Catalytic partial oxidation of methane to synthesis gas over Ni/ γ-Al2O3 catalyst in a fluidized-bed