79 resultados para Organizational image


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular layer of tungstosilicic acid (H4SiW12O40) deposited on freshly-cleaved highly oriented pyrolytic graphite (HOPG) was observed by scanning tunneling microscopy (STM) in air at room temperature. The molecular dimension (11.5 Angstrom) of H4SiW12O40 measured by STM is consistent with known crystallographic parameter. We also imaged the boundary of H4SiW12O40 molecular layer on HOPG showing that molecular layer of H4SiW12O40 was formed. It has been proved that individual tungstosilicic acid species is imaged. The probable reason for the formation of the molecular layer is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation in molecule adsorption mode on pretreated highly oriented pyrolytic graphite electrodes, modified with the title complex K10H3[Dy(SiMo11O39)(2)] by cyclic voltammetry in the title complex solution, was observed in situ by electrochemical scanning tunnelling microscopy (ECSTM) with molecular resolution in sodium sulphate solution. According to the ECSTM images and the known molecular structure we conclude that the adsorption mode of the title complex modified electrode changed during potential cycling from ''vertical'' to ''inclined'' and then ''horizontal'' or ''flat'' mode, i.e. the title complex adsorbed on the surface of electrode by one ligand of the complex at first, then began to incline and was finally adsorbed by two ligands of the complex. This result indicates that the adsorption mode on the modified electrode surface changed during potential cycling in the sulphate solution and a much more stable molecular layer was formed. The change in adlattice of adsorbates on the modified electrode surface from hexagonal to rectangular was also observed by ECSTM. A plausible model was given to explain this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new nonlinear integral transform relating the ocean wave spectrum to the along-track interferometric synthetic aperture radar (AT-INSAR) image spectrum. The AT-INSAR, which is a synthetic aperture radar (SAR) employing two antennas displaced along the platform's flight direction, is considered to be a better instrument for imaging ocean waves than the SAR. This is because the AT-INSAR yields the phase spectrum and not only the amplitude spectrum as with the conventional SAR. While the SAR and AT-INSAR amplitude spectra depend strongly on the modulation of the normalized radar cross section (NRCS) by the long ocean waves, which is poorly known, the phase spectrum depends only weakly on this modulation. By measuring the phase difference between the signals received by both antennas, AT-INSAR measures the radial component of the orbital velocity associated with the ocean waves, which is related to the ocean wave height field by a well-known transfer function. The nonlinear integral transform derived in this paper differs from the one previously derived by Bao et al. [1999] by an additional term containing the derivative of the radial component of the orbital velocity associated with the long ocean waves. By carrying out numerical simulations, we show that, in general, this additional term cannot be neglected. Furthermore, we present two new quasi-linear approximations to the nonlinear integral transform relating the ocean wave spectrum to the AT-INSAR phase spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves, the wavelength changes of a surface wave over varying water depths can be derived from SAR. Approaching the analysis of SAR images of waves and using the general dispersion relation of ocean waves, this indirect technique of remote sensing bathymetry has been applied to a coastal region of Xiapu in Fujian Province, China. Results show that this technique is suitable for the coastal waters especially for the near-shore regions with variable water depths.