195 resultados para OPTICAL LITHOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illumination of an optically levitated particle with an intensity-modulated transverse beam induces a transverse vibration of a particle in an optical trap. Based on this, the trapping force of a trap can be measured. Using an intensity-modulated longitudinal levitating beam causes a particle to move vertically, allowing for the determination of some aerodynamic parameters of a particle in air. The principles and the experimental phenomena are described and the initial results are given. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With one weak probe field and two strong pumping fields, superluminal optical solitons are formed in a lifetime-broadened four-level tripod atomic medium. With proper parameters, both dark and bright solitons can occur in the highly resonant medium. The corresponding group velocity of the solitons can be superluminal. Meanwhile, the conditions for superluminal solitons occurrence are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the theoretical analysis and the numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers. In our model, a pulsed laser was used to generate a large gradient force within a short duration that overcame the adhesive interaction between the stuck particles and the surface; and then a low power continuous - wave (cw) laser was used to capture the levitated particle. We describe the gradient force generated by the pulsed optical tweezers and model the binding interaction between the stuck beads and glass surface by the dominative van der Waals force with a randomly distributed binding strength. We numerically calculate the single pulse levitation efficiency for polystyrene beads as the function of the pulse energy, the axial displacement from the surface to the pulsed laser focus and the pulse duration. The result of our numerical modeling is qualitatively consistent with the experimental result. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally study the ac Stark splitting in D2 line of cold Rb-87 atoms. The frequency span between the Autler-Townes doublets is obviously larger than that derived from theoretical calculation. Two physical effects, which increase the effective Rabi frequency, contribute to the splitting broadening. First, atoms tend to distribute in strong lield places of a inhomogeneous red-detuned light field. Second, atoms reabsorb scattered light when they are huge in number and high in density.