263 resultados para Nuclear spin.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Despite the potential utility of primate somatic cell nuclear transfer (SCNT) to biomedical research and to the production of autologous embryonic stem (ES) cells for cell- or tissue-based therapy, a reliable method for SCNT is not yet availab

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Somatic cell nuclear transfer (SCNT) requires cytoplast-mediated reprogramming of the donor nucleus. Cytoplast factors such as maturation promoting factor are implicated based on their involvement in nuclear envelope breakdown (NEBD) and prema

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though it generates healthy adults, nuclear transfer in mammals remains an inefficient process. Mainly attributed to abnormal reprograming of the donor chromatin, this inefficiency may also be caused at least partly by a specific effect of the clonin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic cell nuclear transfer (SCNT) is a remarkable process in which a somatic cell nucleus is acted upon by the ooplasm via mechanisms that today remain unknown. Here we show the developmental competence (% blastocyst) of embryos derived from SCNT (21%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1 rhodopsin exon 1, and tyrosinase exon 1) genes from 57

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulating evidence suggests that unicellular Archezoa are the most primitive eukaryotes and their nuclei are of significance to the study of evolution of the eukaryotic nucleus. Nuclear matrix is an ubiquitous important structure of eukaryotic nucleus; its evolution is certainly one of the most important parts of the evolution of nucleus. To study the evolution of nuclear matrix, nuclear matrices of Archezoa are investigated. Giardia lamblia cells are extracted sequentially. Both embedment-free section EM and whole mount cell EM of the extracted cells show that, like higher eukaryotes, this species has a residual nuclear matrix in its nucleus and rich intermediate filaments in its cytoplasm, and the two networks connect with each other to form a united network. But its nuclear matrix does not have nucleolar matrix and its lamina is not as typical as that of higher eukaryotes; Western blotting shows that lamina of Giardia and two other Archezoa Entamoeba invadens and Trichomonas vaginali all contain only one polypeptide each which reacts with a mammalia anti-lamin polyclonal serum and is similar to lamin B (67 ku) of mammlia in molecular weight. According to the results and references, it is suggested that nuclear matrix is an early acquisition of the eukaryotic nucleus, and it and the "eukaryotic chromatin" as a whole must have originated very early in the process of evolution of eukaryotic cell, and their origin should be an important prerequisite of the origin of eukaryotic nucleus; in the iamin (gene) family, B-type lamins (gene) should be the ancestral type and that A-type lamins (gene) might derive therefrom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Euglena gracilis cell was extracted sequentially with CSK-Triton buffer, RSB-Magik solution and DNase-As solution. DGD embedment-free electron microscopy showed that in the extracted nucleus there was a residual non-chromatin fibrous network. That it could not be removed by hot trichloroacetic acid further supported the idea that it was a non-histone, non-chromatin fibrous protein network, and should be the internal network of the nuclear matrix. After the sequential extraction, the nuclear membrane was removed, leaving behind a layer of lamina; the chromatin was digested and eluted from the dense chromosomes and residual chromosomal structures that should be chromosomal scaffold were revealed. Western blot analysis with antiserum against rat lamins showed that nuclear lamina of the cell possessed two positive polypeptides, a major one and a minor one, which had molecular masses similar to lamin B and lamin A, respectively. Comparing these data with those of the most primitive eukaryote Archezoa and of higher eukaryotes, it was suggested that the lower unicellular eukaryote E. gracillis already had the nuclear matrix structure, and its nuclear matrix (especially the lamina) might represent a stage of evolutionary history of the nuclear matrix. (C) 2000 Editions scientifiques et medicales Elsevier SAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichotvensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages. (c) 2008 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that germinal vesicle of amphibian oocyte contains small nuclear ribonucleoprotein polypeptide C (SNRPC). In this study, a putative member of SNRPC was identified from Carassius auratus gibelio oocyte cDNA library. Its full-length cDNA has an open reading frame of 201 nt for encoding a peptide of 66 an, a short 5'-UTR of 19 nt and a long 3'-UTR of 347 nt including a polyadenylation signal and poly- (A) tail, and the deduced amino acid sequence has 47% identity with the C-terminal of the zebrafish small nuclear ribonucleoprotein polypeptide C. Western blot analysis revealed its oocyte-specific expression. Immunofluorescence localization indicated that its gene product localized to numerous nucleoli within the oocytes and showed dynamic changes with the nucleoli during oocyte maturation. RT-PCR and Western blot analysis further revealed its constant presence in the oocytes and in the embryos until hatching. The data suggested that the newly identified CagOSNRPC might be a nucleolar protein. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent molecular phylogenetic studies of the sisorid catfishes (Sisoridae) have challenged some aspects of their traditional taxonomy and cladistic hypotheses of their phylogeny. However, disagreement with respect to relationships within this family in these studies highlights the need for additional data and analyses. Here we subjected 15 taxa representing 12 sisorids genera to comprehensive phylogenetic analyses using the second intron of low-copy nuclear S7 ribosomal protein (rpS7) gene and the mitochondrial 16S rRNA gene segments both individually and in combination. The competing sisorid topologies were then tested by using the approximately unbiased (AU) test and the Shimodaira-Hasegawa (SH) test. Our results support previously suggested polyphyly of Pareuchiloglanis. The genus Pseudecheneis is likely to be nested in the glyptosternoids and Glaridoglanis might be basal to the tribe Glyptosternini. However, justified by AU and SH test, the sister-group relationship between Pseudecheneis and the monophyletic glyptosternoids cannot be rejected based on the second intron of rpS7 gene and combined data analyses. It follows that both gene segments are not suitable for resolving the phylogenetic relationships within the sisorid catfishes. Overall, the second intron of rpS7 gene yielded poor phylogenetic performance when compared to 16S rRNA gene, the evolutionary hypothesis of which virtually agreed with the combined data analyses tree. This phenomenon can be explained by the insufficient length and fast saturation of substitutions in the second intron of rpS7 gene, due to substitution patterns such as frequent indels (insertion/deletion events) of bases in the sequences during the evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA). (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Procedures to improve somatic cell nuclear transplantation in fish were evaluated. We reported effects of nonirradiated recipient eggs, inactivated recipient eggs, different combinations between recipient eggs and donor cells, duration of serum starvation, generation number, and passage number of donor cells on developmental rates of nuclear transplant (NT) embryos. Exposure to 25,000 R of gamma-rays inactivated recipient eggs. Single nucleus of cultured, synchronized somatic cell from gynogenetic bighead carp (Aristichthys nobilis) was transplanted into nonirradiated or genetically inactivated unfertilized egg of gibel carp (Carassius auratus gibelio). There was no significant difference in developmental rate between nonirradiated and inactivated recipient eggs (27.27% vs. 25.71%, respectively). Chromosome count showed that 70.59% of NT embryos contained 48 chromosomes. It showed that most NT embryos came from donor nuclei of bighead carp, which was supported by microsatellite analysis of NT embryos. But 23.53% of NT embryos contained more than 48 chromosomes. It was presumed that those superfluous chromosomes came from nonirradiated recipient eggs. Besides, 5.88% of NT embryos were chimeras. Eggs of blunt-snout bream (Megalobrama amblycephala) and gibel carp were better recipient eggs than those of loach (Misgurnus anguillicaudatus) (25% and 18.03% vs. 8.43%). Among different duration of serum starvation, developmental rate of NT embryos from somatic nuclei of three-day serum starvation was the highest, reaching 25.71% compared to 14.14% (control), 20% (five-day), and 21.95% (seven-day). Cultured donor cells of less passage facilitated reprogramming of NT embryos than those of more passage. Recloning might improve the developmental rate of NT embryos from the differentiated donor nuclei. Developmental rate of fourth generation was the highest (54.83%) and the lowest for first generation (14.14%) compared to second generation (38.96%) and third generation (53.01%). (C) 2002 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single later blastula nuclei from AB strain of zebrafish (Danio rerio) were transplanted into enucleated unfertilized eggs of Long fin strain. Of 1119 cloning embryos, 14 reconstructed embryos developed into fry. DNA fingerprinting systems of the cloned fish were similar to those of the nuclear donor fish, but were distinctly different from those of the unclear recipient fish. It confirmed that the genetic material originated from nuclear donor cell other than from nuclear recipient egg. The research suggested that the basic technique for nuclear transplantation performed with different strains of zebrafish has made a breakthrough. It should be helpful for the study of some important developmental problems such as gene function, the regulation of gene expression during animal development, the developmental potential of a nucleus and the interactions between the donor nucleus and the recipient cytoplasm, etc.