254 resultados para NaA zeolite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acidic properties of TS-1 and Silicalite-I zeolites have been investigated by the solid-state MAS NMR technique capable of in situ sample pretreatment. As shown by a combination of the P-31 MAS NMR and H-1 MAS NMR techniques with trimethylphosphine, not only Bronsted acid sites but also Lewis acid sites exist in the TS-1 zeolites. Moreover, TS-1 zeolite is more acidic compared with Silicalite-1. The H-1, Si-29 MAS NMR spectra and the resonance related to Bronsted acid species in the P-31 MAS NMR spectra demonstrate clearly that the presence of titanium in the framework results in the formation of a new hydroxy group, titanols, which is more acidic than silanols of Silicalite-1. The P-31 MAS NMR measurements also illustrate convincingly the existence of at least two different Lewis acid species on the TS-1 zeolites. The conversion of propylene oxide into methoxypropanol catalyzed by TS-1 or Silicalite-I zeolite in methanol solution as a test reaction has also been described. With the increase of titanium in zeolite, TS-1 appears to have a higher activity during the reaction of propylene oxide to methoxypropanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dehydro-aromatization of methane over a Mo-modified penta-sil type high-silica zeolite containing phosphoric and rare earth oxide (abbreviated as Mo/HZRP-1) was investigated. As a modification of HZSM-5, HZRP-1 is also a good support for the preparation of Mo-based zeolite catalysts, and is active for methane dehydro-aromatization. Mo/HZRP-1 catalysts are more active at high Mo loadings compared with Mo/HZSM-5 catalysts. Al-27 MAS NMR spectra of Mo/HZRP-1 reveal that there are two kinds of framework Al in HZRP-1. It is suggested that only the tetrahedral coordinated Al atoms in the form of Al-O-Si species in the zeolite, in the proton forms, are responsible for the formation of aromatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCM-22 zeolite films have been grown with layers vertical to the substrate under hydrothermal synthesis conditions, and characterized by X-ray diffraction and scanning electron microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine zeolite Y crystals (ca. 100-200 nm) have been successfully grown on metakaolin microspheres (< 100 mu m) for which good hydrothermal stability was observed; products were characterized by powder X-ray diffraction, scanning electronic microscopy and transmission electronic microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zeolite KSO1 was successfully synthesized on calcined kaolin microspheres (ca. 60-80 mu m) in situ, and characterized by powder X-ray diffraction, scanning electronic microscopy and nuclear magnetic resonance spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations in the structure and acidity properties of HZSM-5 zeolites with reduction in crystal sizes down to nanoscale (less than 100 nm) have been investigated by XRD, TEM and solid-state NMR with a system capable of in situ sample pretreatment. As evidenced by a combination of Al-27 MAS NMR, Si-29 MAS, CP/MAS NMR and H-1 MAS NMR techniques, the downsize of the zeolite crystal leads to an obvious line broadening of the Al-27, Si-29 MAS NMR spectrum, an increasing of the silanol concentration on the external surface, and a pronounced alteration of the acidity distribution between the external and internal surfaces of the zeolite. In a HZSM-5 zeolite with an average size at about 70 nm, the nonacidic hydroxyl groups (silanols) are about 14% with respect to the total amount of Si, while only 4% of such hydroxyl groups exist in the same kind of zeolite at 1000 nm crystal size. The result of H-1 MAS NMR obtained using Fluorinert(R) FC-43 (perfluorotributyl amine) as a probe molecule demonstrates that most of the silanols are located on the external surface of the zeolite. Moreover, the concentration of Bronsted acid sites on the external surface of the nano-structured zeolite appears to be distinctly higher than that of the microsized zeolite.