83 resultados para NEODYMIUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

REL3(RE=Y, La approximately Lu; HL = m-methylbenzoic acid) were synthesized, and their IR spectra were studied. The crystal structures of the complexes of neodymium and terbium were determined by X-ray diffraction method. Both of them crystallize in the monoclinic space group P2(1)/n and show infinite chain structures. The coordination numbers are nine (Nd3+) and eight (Tb3+), respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(ButCp)2NdCl.2THF reacts with one equivalent of phenyllithum in THF yielding tris(tert-butylcyclopentadienyl)neodymium lithium bromide tetrahydrofuran, [(ButCP)3 NdBrLi(THF)3], as a by-product, whose structure has been determined by X-ray crystallography. The 10-coordinated neodymium atom is bonded to three tert-butyl-cyclopentadienyl groups and one bromine atom, forming a distorted pseudo-tetrahedron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of ErCl3 with one equivalent of C5H9C5H4Na generates the complex {[(C5H9C5H4)Er(THF)]2(mu2-Cl)3(mu3-Cl)2Na(THF)2}.THF, which crystallizes from hexane/THF. The X-ray crystal structure determination shows that each erbium is surrounded by one C5H9C5H4 ligand, two mu3-Cl, two mu2-Cl and one THF in a distorted octahedral arrangement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reaction of lanthanoid trichloride with two equivalents of sodium t-butylcyclopentadienide in tetrahydrofuran affords bis(t-butylcyclopentadienyl)lanthanoid chloride complexes (t-BuCp)2LnCl. nTHF (Ln = Pr, Nd, n = 2; Ln = Gd, Yb, n = 1). The compound (t-BuCp)2PrCl.2THF (1) crystallizes from THF in monoclinic space group P2(1)/c with unit cell dimensions a = 15.080(3), b = 8.855(2), c = 21.196(5) angstrom, beta = 110.34(2)degrees, V = 2653.9 angstrom-3 and D(calcd) = 1.41 g/cm3 for Z = 4. The central metal Pr is coordinated to two t-BuCp ring centroids, one chlorine atom and two THF forming a distorted trigonal bipyramid. The crystal of (t-BuCp)2YbCl.THF (2) belongs to the monoclinic crystal system, space group P2(1)/n with a = 7.726(1), b = 12.554(2), c = 23.200(6) angstrom, beta = 97.77(2)degrees, V = 2229.56 angstrom-3, D(calcd) = 1.50 g/cm3 and Z = 4. The t-BuCp ring centroids, the chlorine atom and the oxygen atom of the THF describe a distorted tetrahedron around the central ion of ytterbium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of GdCl3 with 1 equiv of NaC5Me5 generates a neutral complex C5Me5GdCl2(THF)3 and a novel complex {Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-2-Cl)3(mu-3-Cl)2}2.6THF whixh recrystallizes from THF in triclinic, the space group P1BAR with unit cell dimentions of a 12.183(4), b 13.638(6), c 17.883(7) angstrom, alpha-110.38(3), beta-94.04(3), gamma-99.44(3)-degrees, V 2721.20 angstrom-3 and D(calc) 1.43 g cm-3 for Z = 1. Least-squares refinement of 2170 observed reflections led to a final R value of 0.047. The title complex consists of two Na(mu-2-THF)[(C5Me5)Gd(THF)]2(mu-3-Cl)3(mu-3-Cl)2 units bridged together via two mu-2-THF to Na coordination. Each Gd ion is surrounded by one C5Me5 ligand, two mu-3-Cl, two mu-2-Cl and one THF in a distorted octahedral arrangement with average Gd-C(ring) 2.686(33), Gd-mu-2-Cl 2.724(7), Gd-mu-3-Cl 2.832(8) and Gd-O 2.407(11) angstrom. The sodium ion coordinates to two bridging THF, two mu-2-Cl and two mu-3-Cl to form a distorted octahedron with average Na-mu-2-O, Na-mu-2-Cl and Na-mu-3-Cl of 2.411(21), 2.807(15) and 2.845(12) angstrom, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenyl derivatives of lanthanides Sc(C_6H_5)_3, Y(C_6H_5)_3, LiLa (C_6H_5)_4 and LiPr(C_6H_5)_4 were prepared by Hart et al. in 1970, and dis(cyclopentadienyl) phenyl complexes of lanthanides have been isolated recently. We reported here the synthesis and crystallography parameters of a new type of phenyl derivative of neodymium:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muanggang-Dajing area located in the south end of Dahinggan Mts is the only discovered tin-polymetallic minerzalization belt and the only tectonic magmaism zone with middle-upper grade tin-ore deposites in North China. Tin mineralization in this area is believed tn related to Yanshannian granites which is different from those in South China tin belt. Through geochemical study of these granites on the base of fieldworks , thin section observation, major and trace elements as well as isotopic composision determination, the isochronic sequence and petrogenetic series for the granites have been determined. Hi light ing on the petrogenesis of earlier Yanshannian of MOmarh granites, two groups granites with different Neodymium isotopic features have been distinguished. Both belonging to hi-K calc-alkalinic series, their nature of source rocks and.magma processing were restricted, we argue for that the two groups have get the isotopic differences from their sources-middle and later proterozoic juvenial crustal via mantle underplating. From then on , there is a pre-enrichment of tin in this area. The partial melting from a F rich soruses can dissolve and carry more tin from the same some due to the de-connection of melt, which supply the mineralization fluids after a thoroughly evolement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fanshan complex consists of layered potassic ultramafic-syenite intrusions. The Fanshan apatite (-magnetite) deposit occurs in the Fanshan complex, and is an important style of phosphorus deposit in China. The Fanshan complex consists of three (First- to Third-) Phases of intrusion, and then the dikes. The First-Phase Intrusive contains ten typical layered rocks: clinopyroxenite, biotite clinopyroxenite, coarse-grained biotite clinopyroxenite, pegmatitic orthoclase-biotite clinopyroxenite, variegated orthoclase clinopyroxenite, interstitial orthoclase clinopyroxenite, biotite rock, biotite-apatite rock, biotite rock and magnetite-apatite rock. This layered intrusive consists of nine rhythmic units. Each rhythmic unit essentially comprises a pair of layers: clinopyroxenite at the bottom and biotite clinopyroxenite at the top. The apatite (-magnetite) deposit is situated near the top of rhythmic Unit no. 6 of the First-Phase Intrusive. The Second-Phase Intrusive contains three typical rocks: coarse-grained orthoclase clinopyroxenite, . coarse-grained salite syenite and schorlomite-salite syenite. The Third-Phase Intrusive includes pseudo-trachytic salite syenite, porphyritic augite syenite, fine-grained orthoclase clinopyroxenite and fine-grained salite syenite. The origin of the Fanshan complex is always paid attention to it in China. Because most layered igneous intrusion in the world not only have important deposit in it, but also carry many useful information for studying the formation of the intrusion and the evolvement of magma. Two sketch maps were drawn through orebodies along no. 25 cross-cut on 425 mL and no. 1 cross-cut on 491 mL in the Fanshan mine. Through this mapping, a small-scaled rhythmic layering (called sub-rhythmic layering in the present study) was newly found at the top of the rhythmic Unit no. 6. The concept of sub-rhythmic layering is defined in this article. The sub-rhythmic layering is recognized throughout this apatite-rich part, except for magnetite-apatite rock. Presence of the layered magnetite-apatite rock is one of the characteristics of the Fanshan apatite (-magnetite) deposit. Thus, from this layer downwards six units of sub-rhythmic layering are recognized in the present study. Each unit consists of biotite clinopyroxenite (or biotite rock and biotite-apatite rock) layer at the bottom and apatite rock layer at the top. To study this feature in detail is an important work for understanding the origin of the Fanshan complex and apatite (-magnetite) deposit. The origin of the Fanshan complex and the relation of the formation of the apatite(-magnetite)deposit will be interpreted by the study of sub-rhythmic layering on the basis of previous research works. The magma formed the Fanshan complex was rich in K2O, early crystallized pyroxene, and after this phase more biotite crystallized, but no amphibole appeared. This indicated that the activity of H2O in the magma was low. Major element compositions of biotite and clinopyroxene (on thin sections) in the sub-rhythmic layering were analyzed using electron microprobe analyzer. The analytical results indicate Mg/(Mg+Fe*+Mn) atomic ratios (Fe*, total iron) of these two minerals rhythmically changed in sub-rhythmic layering. The trends of Mg/(Mg+Fe*+Mn) atomic ratio (Fe*, total iron) of biotite and clinopyroxene indicate that the magma evolved markedly from relatively magnesian bottom layer to less magnesian top layer in each sub-rhythmic unit. A general trend through the sub-rhythmic layering sequence is both minerals becoming relatively magnesian upwards. The formation temperatures for sub-rhythmic layering yield values between 600 and 800 ℃, were calculated using the ratio of Mg/(Mg+Fe+Mn) in the salite and biotite assemblage. The equilibrium pressures in the rhythmic layers calculated using the contents of Al in the salite were plotted in the section map, shown a concave curve. This indicates that the magma formed the First-Phase Intrusive crystallized by two vis-a-vis ways, from its bottom and top to its centre, and the magnetite-apatite rock was crytallized in the latest stage. The values of equilibrium pressures in the sub-rhythmic layering were 3.6-6.8(xlO8) Pa with calculated using the contents of Al in the salite. The characteristics of geochemistry in various intrusive rocks and the rocks or apatite of sub-rhythmic layers indicated that the Fanshan complex formed by the comagmatic crystallization. The contents of immiscible elements and REEs of apatite rock at the top of one sub-rhythmic unit are more than biotite clinopyroxenite at the bottom. The contents of immiscible elements and REEs of apatite of biotite clinopyroxenite at the bottom of one sub-rhythmic unit are higher than apatite rock at the top. The curves of rocks (or apatite) in the upper sub-rhythmic units are between two curves of the below sub-rhythmic unit in the primitive mantle-normalized trace element abundance spider diagram and the primitive mantle-normalized REE pattern. The trend for the contents of immiscible elements and REEs inclines to the same contents from the bottom to the top in sub-rhythmic layering. These characteristics of geochemistry of rocks or apatites from sub-rhythmic layering indicate that the latter sub-rhythmic unit was produced by the residual magma after crystallization of the previous sub-rhythmic unit. The characteristics of petrology, petrochemistry, geochemistry in the Fanshan complex and sub-rhythmic layers and the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering rejected the hypotheses, such as magma immiscibility, ravitational settling and multiple and pulse supplement of magma. The hypothesis of differentiation by crystallization lacks of evidences of field and excludes by this study. On the base of the trends of formation temperatures and pressures, the characteristics of petrology, petrochemistry, geochemistry for the Fanshan complex and the characteristics of geochemistry for the rocks (or apatites), the trends of Mg/(Mg+Fe+Mn) atomic ratio of biotite and clinopyroxene in sub-rhytmic layering, and the data of oxygen, hydrogen, strontium and neodymium isotopes, this study suggests that the magma formed the Fanshan complex was formed by low degree partial melting of mantle at a low activity of H2O, and went through the differentiation at the depth of mantle, then multiply intruded and crystallized. The rhythmic layers of the First-Phase Intrusive formed by the magma fractional crystallized in two vis-a-vis ways, from the bottom and top to the centre in-situ fractional crystallization. The apatite (-magnetite) deposit of the Fanshan complex occurs in sub-rhythmic layering sequence. The the origin of the sub-rhythmic layering is substantially the origin of the Fanshan apatite (-magnetite) deposit. The magma formed the rhythmic layers of First-Phase Intrusive was rich in H2O, F and P at the later stage of its in-situ fractional crystallization. The Fanshan apatite (-magnetite) deposit was formed by this residual magma in-situ fractional crystallization. The magnetite-apatite rock was crystallized by two vis-a-vis ways at the latest stage in-situ fractional crystallization in the rhythmic layers. The result was light apatite layer below heavy the magnetite-apatite layer, formed an "inversion" phenomenon.