182 resultados para Monodispersed spheres


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and electron g factors of HgTe quantum dots are investigated, in the framework of the eight-band effective-mass approximation. It is found that the electron states of quantum spheres have aspheric properties due to the interaction between the conduction band and valence band. The highest hole states are S (l = 0) states, when the radius is smaller than 9.4 nm. the same as the lowest electron states. Thus strong luminescence from H-Te quantum dots with radius smaller than 9.4 nm has been observed (Rogach et al 2001 Phys. Statits Solidi b 224 153). The bandgap of H-Te quantum spheres is calculated and compared with earlier experimental results (Harrison et al 2000 Pure Appl. Chem. 72 295). Due to the quantum confinement effect, the bandgap of the small HgTe quantum spheres is positive. The electron g factors of HgTe quantum spheres decrease with increasing radius and are nearly 2 when the radius is very small. The electron g factors of HgTe quantum ellipsoids are also investigated. We found that as some of the three dimensions increase, the electron g factors decrease. The more the dimensions increase, the more the g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and optical properties of freestanding GaN wurtzite quantum wires are studied in the framework of six-band effective-mass envelope function theory. It is found that the electron states are either twofold or fourfold degenerate. There is a dark exciton effect when the radius R of GaN wurtzite quantum wires is in the range of [0.7, 10.9] nm. The linear polarization factors are calculated in three cases, the quantum confinement effect (finite long wire), the dielectric effect and both effects (infinitely long wire). It is found that the linear polarization factor of a finite long wire whose length is much less than the electromagnetic wavelength decreases as R increases, is very close to unity (0.979) at R = I nm, and changes from a positive value to a negative value around R = 4.1 nm. The linear polarization factor of the dielectric effect is 0.934, independent of radius, as long as the radius remains much less than the electromagnetic wavelength. The result for the two effects shows that the quantum confinement effect gives a correction to the dielectric effect result. It is found that the linear polarization factor of very long (treated approximately as infinitely long) quantum wires is in the range of [0.8, 1]. The linear polarization factors of the quantum confinement effect of CdSe wurtzite quantum wires are calculated for comparison. In the CdSe case, the linear polarization factor of R = I nm is 0.857, in agreement with the experimental results (Hu et al 2001 Science 292 2060). This value is much smaller than unity, unlike 0.979 in the GaN case, mainly due to the big spin-orbit splitting energy Delta(so) of CdSe material with wurtzite structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum rods with an ellipsoidal boundary is given after a coordinate transformation. The energies, wave functions, and transition possibilities are obtained as functions of the aspect ratio e with the same method we used on spherical dots. With an overall consideration of both the transition matrix element and the Boltzmann distribution we explained why the polarization factor increases with increasing e and approaches a saturation value, which tallies quite well with the experimental result. When e increases more and more S-z states are mixed into the ground, second, and third states of J(z)=1/2, resulting in an increase of the emission of z polarization. It is just the linear terms of the momentum operator in the hole Hamiltonian that cause the mixing of S and P states in the hole ground state. The effects of the crystal field splitting energy, temperature, and transverse radius to the polarization are also considered. We also calculated the band gap variation with the size and shape of the quantum rods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The linear-polarization optical property of CdSe quantum rods is studied in the framework of effective-mass envelope function theory.The effects of shape and magnetic field on the linear polarization factors are investigated.It is found that CdSe quantum spheres have negative polarization factors (xy-polarized emission)and quantum long rods with small radius have positive linear polarization factors (z-polarized emission).The z-direction is the direction of the c axis.Quantum long rods with large radius have negative linear polarization factors,due to the hexagonal crystal symmetry and the crystal field splitting energy.The linear polarization factors decrease and may change from a positive value to a negative value;i.e.,the z-polarized emissions decrease relative to xy-polarized emissions as the magnetic field applied along the z direction increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A facile and effective aqueous chemical synthesis approach towards well control of periodical ZnO textures in large-scale areas is reported, by which considerable adjusting of surface wettability can be realized. With the assistance of polystyrene spheres monolayer template and morphology control agent, we succeeded in preparing a series of ordered ZnO microbowls with different sag height. It was found that the contact angle could be well adjusted by changing geometry of microbowl. Such novel, ordered arrays are expected to exploit the great potentiality in waterproof or self-cleaning micro/nanodevices, and even microfluidic devices. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled vertical drying deposition method was used to make high-quality single crystal close-packed colloidal films formed of different radii polystyrene latex spheres on glass substrates coming from a low concentration water suspension (0.1% volume fraction). Regardless of the spheres radii the film thickness was about 6.3 microns. However, cracks destroyed the crystalline film structure during the colloidal film growth. The effect of particle radius (85-215 nm range) on film cracking was systematically studied using in situ optical fracture monitoring. Primary parallel cracks run along the vertical growth direction, later followed by secondary branched cracks in-between the primary cracks due to residual water evaporation. Quantitative theoretical relationship between the cracks spacing and particles radius was derived and shows good agreement with experimental observations. Normalized cracks spacing is related to a reciprocal ratio of the dimensionless particle radius.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystal formation process of charged colloidal particles is investigated using Brownian dynamics (BD) simulations. The particles are assumed to interact with the pair-additive repulsive Yukawa potential. The time evolution of crystallization process and the crystal structure during the simulation are characterized by means of the radial distribution functions (RDF) and mean square displacement (MSD). The simulations show that when the interaction is featured with long-range, particles can spontaneously assemble into body-centered-cubic (BCC) arrays at relatively low particle number density. When the interaction is short-ranged, with increasing the number density particles become trapped into a stagnant disordered configuration before the crystallization could be actualized. The simulations further show that as long as the trapped configurations are bypassed, the face-centered-cubic (FCC) structures can be achieved and are actually more stable than BCC structures. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel form of ball-like carbon material with its size in micrometer range was prepared from coal with nickel as catalyst by arc plasma method. The carbon material has been systematically studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and ultraviolet laser Raman spectroscopy. The SEM observation shows that the novel carbon material exists in various forms such as individual balls, net-like and plate-like forms, all of which have a quite smooth surface. The diameters of these carbon spheres are quite uniform and in a narrow range of 10-20 mum. The EDS analysis reveals that the ball-like carbon material contains more than 99.5% of carbon and a little amount of other elements such as nickel, silicon and aluminum, The XRD and UV-Raman results reveal that the novel carbon material is a kind of highly graphitized carbon. The growth mechanism of the ball-like carbon material was proposed and discussed in terms of arc plasma parameters and the chemical structure of coal-based carbon. (C) 2002 Elsevier Science Ltd. All rights reserved.