127 resultados para LIGHT-SCATTERING


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability at low temperature, ca. 4 degrees C, were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as prepared nanoparticles revealed the formation of well-dispersed An NPs of ca. 2 nm diameter. Moreover, the color change of the An NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on An NPs. All the characterization results showed that the monodisperse An NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) were prepared by mixing aqueous solutions of chitosan (CS) and poly(L-glutamic acid) (PLGA) at various pH. It was found that the stoichiometry of the PECs depends on pH.An investigation of the PECs using Fourier transform infrared spectroscopy proved that the formation of the complexes is due to electrostatic interaction between –NH3 + groups of CS and –COO− groups of PLGA. The solid PECs were characterized using wide-angle X-ray diffraction, which suggested that a strong interaction occurs between the two polymers at pH = 4 or 5 and relatively weak interaction at pH = 3. These results were further confirmed by thermogravimetric analysis data. Transmission electron microscopy showed that the complexes have a spherical shape. The effect of ionic strength on the size of the PECs was also studied using dynamic light scattering. It was found that the size of the PECs is dependent on pH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substantial progress has been made recently in extending the supramolecular assembly of biomimetic structures to vesicle-based sophisticated nanocomposites and mesostructures. We report herein the successful preparation of unilamellar surfactant vesicles coated with a monolayer of ring-shaped {Mo-154} polyoxometalate (POM) nanoclusters, (NH4)(28)[Mo-154 (NO)(14)O(448)Hi(4)(H2O)(70)].approximate to 350H(2)O, by coulomb attractions using preformed didodecyldimethylammonium bromide (DDAB) surfactant vesicles as templates. The resultant vesicle-templated supramolecular assemblies are robust (they do not disintegrate upon dehydration) both at room-temperature ambient and vacuum conditions, as characterized by conventional transmission electron microscopy (TEM) and atomic force microscopy (AFM). The flexibility of the complex soft assemblies was also revealed by AFM measurements. The effect of POM-vesicle coulomb attractions on the dimensions of the templating vesicles was also investigated by using dynamic light scattering (DLS).Although origins of the structure stability of the as-prepared supramolecular assemblies are not clear yet, the nanometer scale cavities and the related properties of macroions of the POM clusters may play an important role in it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated systematically the morphology of thin films spin-coated from solutions of a semicrystalline diblock copolymer, poly(L-lactic acid)-block-polystyrene (PLLA-b-PS), in solvents with varying selectivity. In neutral solvents (chloroform and tetrahydrofuran (THF)), a spinodal-like pattern was obtained and the pattern boundary was sharpened by diluting the solution. Meanwhile, loose spherical associates, together with larger aggregates composed of these associates by unimer bridges, formed partly due to crystallization of the PLLA blocks in relatively concentrated solutions. In slightly PS-selective solvent (e.g., benzene), both loose and compact spherical micelles were obtained, depending on the polymer concentration, coexisting with unimers. When enhancing the selectivity with mixed solvents, for example, mixing the neutral solvent and the slightly selective solvent with a highly PS-selective solvent, CS2, loose assemblies (nanorods in CS2/THF mixtures and polydisperse aggregates in CS2/benzene mixtures) and well-developed lamellar micelles were obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The branched copolymers prepared from ethylene and alpha-olefins using rac-Et(Ind)(2)ZrCl2/MMAO catalyst system were studied. Both the absolute molecular weight ((M) over bar (W)) and the molecular size (radius of glyration, R-g) of the polymers eluting from gel permeation chromatography (GPC) columns were obtained simultaneously via a high temperature GPC coupled with a two-angle laser light scattering (TALLS) detector. The branched structures and performances of the copolymers display approximate molecular weight and molecular sizes were investigated. Wide angle X-ray diffraction analyses indicate that 16-carbon side branch could co-crystallize effectively with backbone chain at low alpha-olefin incorporation. The melt behaviors of the copolymers were studied by dynamic rheological measurements. Both branch length and comonomer content affect considerably the loss modulus, storage modulus and complex viscosity of the copolymers. The relationship between the dynamic-mechanical behavior and the comonomer content of the copolymers was also examined by dynamic-mechanical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The experimental data of phase diagrams for both polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) binary and toluene/polyethylene oxide/poly(ethylene oxide-b-dimethylsiloxane) ternary polymer-containing systems was obtained at atmosphere pressure by light scattering method. The critical points for some pre-selected compositions and the pressure effect on the phase transition behavior of ternary system were investigated by turbidity measurements. The chosen system is a mixture of ternary which is one of the very few abnormal polymer-containing systems exhibiting pressure-induced both miscibility and immiscibility. This unusual behavior is related to the toluene concentration in the mixtures. The effect of toluene on the phase transition behavior of the ternary polymer-containing mixture was traced. Such behavior can make it possible to process composite materials from incompatible polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two commercial biaxially oriented polypropylene (BOPP) resins, resin A and resin B, having different processing properties, were fractionated by preparative temperature-rising elution fractionation (TREF). The TREF fractions were further characterized by gel permeation chromatography (GPC), gel permeation chromatography coupled with light scattering (GPC-LS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). GPC-LS did not find visible long-chain branching in either resin A or B. The results from TREF and DSC indicate that the fractional melting parameter f(T) may be used to predict the profile of the TREF cumulative weight distribution curve. GPC results show that the molecular weights of the fractions tend to increase with elution temperature. WAXD and DSC data show that the crystallinity of fractions does not increase monotonically with increase of elution temperature. There appears to be a maximum in the plot of crystallinity versus elution temperature. The high-speed BOPP resin A has a lower isotacticity but a homogeneous isotacticity distribution and a higher molecular weight but a broader molecular weight distribution than resin B.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We obtained the single-chain polycarbonate sample, by a new fast evaporation method and found that the polycarbonate sample obtained by this method is completely amorphous, while the polycarbonate sample obtained by other methods all have a certain degree of crystallinity. The glass transition temperature (T-g) of the sample decreases with the decreasing of concentration when the concentration of the prepared solution is below the critical value. The critical concentration we obtained from the T-g dependence of concentration is 0.9% g/mL and is in accord with that obtained by viscometry and light scattering methods directly from the solution. The structural relaxation behavior is found also different from that of a normal bulk sample of polycarbonate. The enthalpic peak of the single-chain sample is lower: than that of the bulk one, which corresponds to the lower glass transition temperature. The peak of the single-chain sample is lower and broader, and the relaxed enthalpy is much lower compared with that of the bulk sample. These results have been explained in terms of the effect of entanglement on the mobility of the segments in polymer and the compact conformation in the single-chain sample.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel combination of laser light scattering (LLS) and the micronization of a water-insoluble polymer into narrowly distributed nanoparticles stable in water has provided not only an accurate, reliable and microscopic method to study polymer biodegradation, but also a novel and fast way to evaluate the biodegradability of a given polymer. Using poly(epsilon-caprolactone) (PCL) as a typical example, we have shown that its biodegradation time can be shortened by a factor of more than 10(3) times in comparison with the time required to biodegrade a thin film (10 x 10 x 0.1 mm(3)). Moreover, the biodegradation kinetics can be in-situ monitored in terms of the decrease of the time-average scattering intensity and the particle number. A comparison of static and dynamic LLS results revealed that the enzyme, Lipase Pseudomonas, ''eats'' the PCL nanoparticles in an one-by-one manner and the enzymatic biodegradation of PCL follows a zero-order kinetics. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An organo-soluble polyimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2'dimethyl-4,4'-methylene dianiline (DMMDA), was synthesized via two-step polycondensation accompanied by chemical imidization. Five fractions were prepared by fractionation. The dilute solutions of the fractions were studied by LLS (Laser Light Scattering) and the intrinsic viscosities of the fractions were measured. The unperturbed dimension was determined by the intrinsic viscosity with the Stockmayer-Fox equation. The results indicate that the polyimide in this study has a flexible chain conformation in chloroform and N,N-dimethyl acetamide (DMAc). However, the degree of chain expansion differs in different solvents. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.