78 resultados para INVERSION PUBLICA
Resumo:
Photoionization of hydrogen atoms in few-cycle laser pulses is studied numerically. The total ionization probability, the. instantaneous ionization probability; and the partial ionization probabilities in a pair of opposite directions are obtained. The partial ionization probabilities are not always equal to each other which is termed as inversion asymmetry. The variation of asymmetry degree with the CE phase, the pulse duration and the pulse intensity is studied. It is found that the pulse intensity affects the asymmetry degree in many aspects. Firstly, the asymmetry is more distinct at higher intensities than that at lower intensities when the pulse duration exceeds 4 cycles; secondly, the maximal asymmetry in lower intensities varies with the CE phase visibly while at higher intensities riot; thirdly, the partial ionization probabilities equal to each other for some special CE phases. For lower pulse intensities, the corresponding value of CE phase is always 0.5 pi and 1.5 pi, while for higher pulse intensities, the corresponding value varies with the pulse intensity. Similar phenomena were observed in a recent experiment using few-cycle radio-frequency (RF) pulses.
Resumo:
The control role of the relative phase between the probe and driving fields on gain, dispersion and populations in an open V-type three-level system with spontaneously generated coherence is studied. The result shows that by adjusting the value of the relative phase, the transformation between lasing with inversion and lasing without inversion (LWI) can be realized and high dispersion (refractive index) without absorption can be obtained. The shape and value range of the dispersion curve are similar to those of the gain curve, and this similarity is closely related to the relative phase. The effects of the atomic exit and injection rates and the incoherent pump rate on the control role of the relative phase are also analysed. It is found easier to get LWI by adjusting the value of the relative phase using the open system rather than the closed system, and using an incoherent pump rather than without using the incoherent pump. Moreover the open system can give a larger LWI gain than the closed system.
Resumo:
We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping. We studied effects of the relative phase between the probe and driving fields on the absorption and dispersion properties in an open three-level ladder system with spontaneously generated coherence but without incoherent pumping. It is shown that by the phase controlling, switching from absorption to lasing without inversion (LWI) and enhancing remarkablely LWI gain can be realized; large index of refraction with zero absorption and the electromagnetically induced transparency can be obtained. We also find that varying the atomic injection and exit rates has a considerable influence on the phase dependent-absorption property of the probe field, existent of the atomic injection and exit rates gives the necessary condition of the realization of LWI, getting LWI is impossible in the corresponding closed system without incoherent pumping.