518 resultados para HOST-SENSITIZED LUMINESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence spectra of Nd: YVO4 under excitation of a continuous wave (CW) diode laser and a femtosecond laser at 800nm were investigated. It was found that Nd: YVO4 shows different upconversion and downconversion luminescencent behaviors when excited by the diode laser and the femtosecond laser. The dependence of the upconversion luminescence intensity on the pump power of the femtosecond laser was discussed. The populations of the upper energy levels for upconversion and downconversion luminescence were calculated based on the Bloch equations. The calculations agree well with the experimental results. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel multifunctional inorganic-organic photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazolcarbazolyl-CdS nanocomposites with different molar ratios of US to poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl (PVNPAK) were synthesized via a postazo-coupling reaction and chemically hybridized approach, respectively. The nanocomposites are highly soluble and could be obtained as film-forming materials with appreciably high molecular weights and low glass transition temperature (T,) due to the flexible spacers. The PVNPAK matrix possesses a highest-occupied molecular orbital value of about -5.36 eV determined from cyclic voltammetry. Second harmonic generation (SHG) could be observed in PVNPAK film without any poling procedure and 4.7 pm/V of effective second-order nonlinear optical susceptibility is obtained. The US particles as photosensitizers had a nanoscale size in PVNPAK adopting transmission electron microscopy. The improvement of interface quality between US and polymer matrix is responsible for efficient photoinduced charge generation efficiency in the nanocomposites. An asymmetric optical energy exchange between two beams on the polymer composites PVNPAK-CdS/ECZ has been found even without an external field in two-beam coupling (TBC) experiment, and the TBC gain and diffraction efficiency of 14.26 cm(-1) and 3.4% for PVNPAK-5-CdS/ECZ, 16.43 cm(-1) and 4.4% for PVNPAK-15-CdS/ECZ were measured at a 647.1 nm wavelength, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-density holographic recording parameters of a novel two dyes-sensitized photopolymer under different exposure wavelengths are studied. The results show that the maximum diffraction efficiency, exposure sensitivity, maximum refraction index modulation, dynamic range, and the exposure time constant increases with the increase of the exposure wavelength. The analysis indicates that the scattering has an important role in the forming of the holographic grating. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riboflavin is employed as the photosensitizer of a novel photopolyrner material for holographic recording, This material has a broad absorption spectrum range (More than 200nm) due to the addition of this dye. The experimental results show that our material has high diffraction efficiency and large refractive index modulation. The maximum diffraction efficiency of the photopolymer is about 56%. The digital data pages are stored in this medium and the reconstructed data page has a good fidelity, with the bit-error-ratio of about 1.8 X 10(-4). it is found that the photopolymer material is suitable for high-density volume holographic digital storage.