140 resultados para HEXADECYLTRIMETHYLAMMONIUM BROMIDE
Resumo:
Paclitaxel-loaded poly(ethylene glycol)-b-poly(L-lactide (LA)) (PEG-PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG-PLA block copolymer and the other is based on a PEG-PLA-paclitaxel conjugate, abbreviated as "conjugate micelles" Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG-PLA-paclitaxel and PEG-PLA are 6.31 x 10(4) and 1.78 x 10(-3) g L-1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, in vitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel-loaded micelles against human liver cancer H7402 cells was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.
Resumo:
Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)(2+), with the detection limits of 2.4 x 10(-7) and 2.0 x 10(-8) mol/L (S/N=3), respectively. The Michaelis constant K-m value was 1.73 x 10(-4) mol/L and the maximum velocity V-max was 1.62 x 10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24 x 10(-3) and 2.94 x 10(-4) mol/L.
Resumo:
Effective enhancement of electrochermluminescence (ECL) of peroxydisulfate on a C-60/didodecyldimethyl ammonium bromide (C-60/DDAB) film coated glassy carbon electrode (GCE) surface is reported in this paper. The C60/DDAB film gave lower cathodic current in the presence of peroxydisulfate than that from a bare GCE. To our surprise, electrochemiluminescent intensity from peroxydisulfate reduction was effectively enhanced on the C60/DDAB film, which was 50 times and 250 times higher than those from a DDAB film coated and bare GCE, respectively. Moreover, the ECL onset potential on the C60/DDAB film was about -0.9 V, which positively shifted 200 mV compared with that from the bare GCE. Dissolved oxygen and the applied potential also affected the electrochemiluminescent intensity. The presence of oxygen decreased the intensity, and the intensity reached maximum at the applied potential of -1.7 V. The unique property will greatly enrich ECL studies and applications based on fullerenes.
Resumo:
By varying the substituent position of aminomethyl on pyridine ring in acid solution, different dimensional lead bromide frameworks ranging from zero-dimension and one-dimension to two-dimension were obtained. 2-(Aminomethyl)pyridine (2-AMP) or 3-(aminomethyl)pyridine (3-AMP) and PbBr2 construct hybrid perovskites, of which (H(2)2-AMP)PbBr4 (1) exhibits two-dimensional perovskite sheets with special hydrogen bonds and (H(2)3-AMP)PbBr6 (2) shows an uncommon zero-dimensional inorganic framework with isolated octahedra. The characteristic exciton peaks in absorption spectra are located at 431 nm for compound 1 and at 428 nm for compound 2. (H(2)4-AMP)PbBr4 (3) with one-dimensional zigzag edge-sharing octahedral PbBr(4)(2-)chains can be obtained using 4-(aminomethyl)pyridine (4-AMP) as organic component under the same experimental conditions as those for 2-AMP and 3-AMP.
Resumo:
We report an aptamer-based method for the sensitive detection of proteins by a label-free fluorescing molecular switch (ethidium bromide), which shows promising potential in making protein assay simple and economical.
Resumo:
The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.
Resumo:
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of NIX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.
Resumo:
Phase diagrams corresponding to aqueous biphasic systems of salt (the organic ionic liquid of salts [C(4)mim]Cl, [C(6)mim]Cl, and [C(8)mim]Cl) + salt (K3PO4, K2CO3) + water were determined at 298.15 K. The binodal curve was fitted to the Merchuk equation. Tie lines assigned from mass phase ratios according to the lever arm rule were satisfactorily described using the Othmer-Tobias and Bancroft equations.
Resumo:
In this study, KMgF3:Eu2+ luminescent nanocrystals (NCs) were prepared in water/cetyltrimethylammonium bromide (CTAB)/2-octanol microemulsions. The KMgF3:Eu2+ NCs were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), fluorescence spectrum, infrared spectroscopy (IR) and elementary analysis. The results showed that the size of the KMgF3:Eu2+ NCs was hardly affected by water content and surfactant (CTAB) concentration. The emission spectrum showed that the position of the 362 nm peak is due to the K+ sites substituted Eu2+. Two emission peaks located at 589 and 612 nm can be attributed to Eu3+, which exist at two different types of Eu3+ centers: one is Eu3+ at a K+ site, the other is clustering of Eu3+ ions in the interstices of KMgF3 host lattice.
Resumo:
Treatment of indenyl-modified imidazolium bromide [C9H7CH2CH2(NCHCHN(C6H2Me3-2,4,6)CH)Br] ((IndH-NHC-H)Br) with rare earth metal tetra(alkyl) lithium (Ln(CH2SiMe3)(4)Li(THF)(4)) or with (trimethylsilylmethyl)lithium (LiCH2SiMe3) and rare earth metal tris(alkyl)s (Ln(CH2SiMe3)(3)(THF)(2)) sequentially afforded the first NHC-stabilized monomeric rare earth metal bis(alkyl) complexes (Ind-NHC)Ln(CH2SiMe3)(2) (1, Ln = Y; 2, Ln = Lu; 3, Ln = Sc) via double-deprotonation reactions. Complexes 1-3 are THF-free isostructural monomers. The monoanionic Ind-NHC species bond to the central metal ion in a eta(5):kappa(1) constrained geometry configuration (CGC) mode, which combine with the two cis-located alkyl moieties to form a tetrahedron ligand core, leading to the chirality of the complexes. Under the presence of activators AlEt3 and [Ph3C][B(C6F5)(4)], complex 2 showed catalytic activity toward the polymerization of isoprene to afford 3,4-regulated polyisoprene (91%).
Resumo:
A triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-PEG-PLA)/paclitaxel (PTX) conjugate was synthesized by the reaction of carboxyl-terminated copolymer PLA-PEG-PLA with PTX in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. Carboxyl-terminated copolymer PLA-PEG-PLA was prepared by the reaction of the hydroxyl end groups in copolymer PLA-PEG-PLA with succinic anhydride. Its structure was confirmed by NMR and gel permeation chromatography. The PLA-PEG-PLA/PTX conjugates could self-assemble into micelles in aqueous solutions with a low critical micelle concentration. Dynamic light scattering and environmental scanning electron microscopy analyses of the PLA-PEG-PLA/PTX micelles revealed their spherical structure and size of 220 nm. The antitumor activity of the conjugate against woman Hela cancer cells, evaluated by the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyl tetrazolium bromide method, showed that the conjugates had an antitumor activity similar to that of pure PTX. The obtained PLA-PEG-PLA/PTX conjugates are expected to be used in clinical practice.
Resumo:
Poly( ethylene oxide)-b-poly(N, N-dimethylacrylamide) (PEO-b-PDMA) was synthesized by successive atom transfer radical polymerization (ATRP) of N, N-dimethylacrylamide (DMA) monomer using PEO-Br macro initiators as initiator, CuBr and 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetra decane (Me-6[14] aneN(4)) as catalyst and ligand. PEO-Br macroinitiator was synthesized by esterification of PEO with 2-bromoisobutyryl bromide. GPC and H-1 NMR studies show that the plot of ln([DMA](0)/[ DMA]) against the reaction time is linear, and the molecular weight of the resulting PDMA increased linearly with the conversion. Within 3 h, the polymerization can reach almost 60% of conversion. PEO-b-PDMA copolymer with low polydispersity index (M-w/M-n approximate to 1.1) is obtained. Self-assembly of PEO-b-PDMA in selective solvents is also studied. It could self-assemble into micelles in methanol/acetone (1/10, v/v) solution. TEM analyses of the PEO-b-PDMA micelles with narrow size distribution revealed that their size and shape depend much on the copolymer composition.
Resumo:
A reinvestigation of the reaction between C-60(2-) and benzyl bromide in benzonitrile containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) has shown that there are more reaction products than previously reported. Use of a silica rather than a "Buckyclutcher I" column for HPLC purification led to isolation of two previously unattained products in the reaction mixture, one of which was identified as 1,2-(PhCH2)(2)C-60 by UV-vis and NMR. The earlier incorrectly assigned 1,2-(PhCH2)(2)C-60 was identified as the methanofullerene C61HPh by X-ray single-crystal diffraction. The electrochemistry of genuine 1,2-(PhCH2)(2)C-60 shows that its first reduction potential in PhCN containing 0.1 M TBAP is cathodically shifted by 100 mV with respect to E-1/2 for reduction of 1,4-(PhCH2)(2)C-60, indicating that the addition pattern significantly affects the electrochemistry of derivatized C-60. Visible and near-IR spectra of the monoanion and dianion of 1,2-(PhCH2)(2)C-60 are also reported.
Resumo:
Substantial progress has been made recently in extending the supramolecular assembly of biomimetic structures to vesicle-based sophisticated nanocomposites and mesostructures. We report herein the successful preparation of unilamellar surfactant vesicles coated with a monolayer of ring-shaped {Mo-154} polyoxometalate (POM) nanoclusters, (NH4)(28)[Mo-154 (NO)(14)O(448)Hi(4)(H2O)(70)].approximate to 350H(2)O, by coulomb attractions using preformed didodecyldimethylammonium bromide (DDAB) surfactant vesicles as templates. The resultant vesicle-templated supramolecular assemblies are robust (they do not disintegrate upon dehydration) both at room-temperature ambient and vacuum conditions, as characterized by conventional transmission electron microscopy (TEM) and atomic force microscopy (AFM). The flexibility of the complex soft assemblies was also revealed by AFM measurements. The effect of POM-vesicle coulomb attractions on the dimensions of the templating vesicles was also investigated by using dynamic light scattering (DLS).Although origins of the structure stability of the as-prepared supramolecular assemblies are not clear yet, the nanometer scale cavities and the related properties of macroions of the POM clusters may play an important role in it.
Resumo:
Ordered hexagonal mesoporous silica material (JLU-30) has been successfully synthesized in alkaline media at high temperature (> 160 degreesC, using cationic (1,3-dimethyl-2-imidazolidin-2-ylidene)hexadecylmethyl-ammonium bromide (DIHAB) as a template, and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, differential thermal analysis (DTA), and thermogravimetric analysis (TG), as well as Al-27 and Si-29 nuclear magnetic resonance (NMR) spectroscopy. Mesoporous JLU-30 shows much higher hydrothermal stability than MCM-41. Si-29 NMR spectra indicate that the pore walls of JLU-30 samples synthesized at high temperature (160 degreesC) are fully condensed, giving a Q(4)/Q(3) ratio as high as 6.2. In contrast, MCM-41 synthesized at relatively low temperature (100 degreesC) shows the Q(4)/Q(3) + Q(2) ratio at 1.1. Such unique structural feature might be responsible for the observed highly hydrothermal stability of the mesoporous silica materials (JLU-30).