86 resultados para HELICAL ANCHOR
Resumo:
Acute peristome edema disease (APED) is a new disease that broke out in cultured sea cucumber along the Shangdong and Liaoning province coasts in China, PR, and has caused a great deal of death in Apostichopus japonicus (Selenka) since 2004. Here we report virus-like particles found in intestine epithelium of sea cucumbers reared in North China. It is the first time that sea cucumbers are reported to be infected by virus. Histological examinations showed that the viral inclusion bodies existed in intestine epithelium cells. Electron microscopic examinations show that the virions were spherical, 80-100 nm in diameter, and composed of a helical nucleocapsid within an envelope with surface projections. Detailed studies on the morphogenesis of these viruses found many characteristics previously described for coronaviruses. Virus particles always congregated, and formed a virus vesicle with an encircling membrane. The most obvious cellular pathologic feature is large granular areas of cytoplasm, relatively devoid of organelles. Tubular structures within virus-containing vesicles, nucleocapsid inclusions, and double-membrane vesicles are also found in the cytopathic cells. No rickettsia, chlamydia, bacteria, or other parasitic organisms were found. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Floral organogenesis and development of Przeivalskia langutica Maxim, endemic to China and Hyoscyamus niger L. , which belong to the tribe Hyoscyameae (Solanaceae), were studied using scanning electron microscope. They have three common characters of floral organ initiation and development: 1) initia-tion of the floral organs in the two species follows Hofmeister's rule; 2) the mode of corolla tube development belongs to the "late sympetaly" type; 3) primordia of the floral appendages initiated in a pentameroua pattern and acropetal order. But initiation of the calyx-lobe primordia showed different modes in these two species. The calyx-lobe primordia of H, niger have simultaneously whorled initiation, while those of P, tangulica have helical initiation, but the five calyx-lobe primordia form a ring after all five calyx-lobe primordia occur. The systematic significance of the present results in the genera Hyoscyamus and Przeivalskia is discussed in this paper.
Resumo:
采用第三脑室注入CRF 及N E 的方法观察对高原鼠兔(Ochotona curzoniae) 体液免疫的影响。结果表明: 第三脑室注入CRF 1 μg 可抑制抗体生成, 比对照下降29.2% (P < 0.01) , 而在第三脑室注入CRF 受体阻断剂α-helical CRF- (9241) 50μg 后再注入CRF 1μg 则可取消CRF 对抗体生成的抑制作用; 第三脑室注入5 nM N E, 与对照相比, 抗体水平下降38.85%(P < 0.01) , 而使用6-OHDA 损毁脑内交感神经系统则使抗体水平升高24.31% (P < 0.01)。这些结果表明, 高原鼠兔中枢CRF 升高对体液免疫有抑制作用, 中枢交感神经系统对体液免疫也具有紧张性抑制作用。
Resumo:
Floral organogenesis and development of two Solanaceae species, Anisodus tanguticus and Atropa belladonna, were studied by using scanning electron microscopy (SEM) as part of a project on systematics and evolution in the tribe Hyoscyameae. These two species share the following common characters of floral organ initiation and development: (1) initiation of the floral organs in the two species follows Hofmeister's rule; (2) the mode of corolla tube development belongs to the "late sympetaly" type, namely, petals are initiated separately and later become joined by fusion of their basal meristem, then rise together and form a corolla tube; (3) primordia of the floral appendages are initiated in a pentamerous pattern and acropetal order: sepals are initiated first, followed by the petals and stamens, and finally the carpels. The whorl of five stamen primordia forms almost simultaneously and originates opposite the sepal primordia, but initiation of the sepal primordia shows different modes in the two species. The sepal primordia of Anisodus tanguticus have simultaneously whorled initiation, while those of Atropa belladonna have helical initiation. The systematic significance of the present results in the genera Anisodus and Atropa is discussed in this paper.
Resumo:
介绍了几种自行研制开发的螺旋面钻尖刃磨机床。这些刃磨机结构简单 ,成本低 ,操作容易。在这些刃磨机上所刃磨出的螺旋面钻尖与普通钻头钻尖相比可实现自动定心功能 ,且钻削轴向力小。
Resumo:
China is a mountainous country in which geological hazards occurred frequently, especially in the east of China. Except the geology, topography and extreme climate, the large scale human activities have become a major factor to landslides. Typical human activities which induced landslides are fill, cut and underground mining. On the topic of the deformation mechanism and slope stability, taking three different man-made slopes as examples, deformation mechanism and slope stability were studied by several methods, such as field work, numerical modeling and monitor. The details are as following: (1) The numerical modeling approach advantages over other conventional methods such as limit methods, so the numerical modeling is the major tool in this thesis. So far, there is no uniform failure criterion for numerical simulation. The failure criterion were summarized and analyzed firstly, subsequently the appropriate criterion was determinated. (2) Taking 220kV Yanjin transformation substation fill slope as example, the deformable characteristic, unstable mode and laboratory tests were studied systematically. The results show: the slope deformation was probably caused by a combination effect of unfavorable topographic, geological and hydro geological conditions, and external loading due to filling. It was concluded that the creep deformation of the slope was triggered by external loading applied at the back of the slope. In order to define the calculating parameters, a set of consolidated drained (CD) tests, consolidated undrained (CU) tests, repeated direct shear tests and UCS tests were carried out. The stability of the slope before and after reinforcement was assessed using 3D numerical modeling and shear strength reduction technique. The numerical modeling results showed: the factor of safety (FOS) of the slope was 1.10 in the natural state, and reduced to 1.03 after fill, which was close to the critical state and it caused creeping slip or deformation under rainfall. The failure surface in the slope is in active shear failure, whereas tensile failure occurs at the slope crest. After the site was reinforced with piles, the FOS was 1.27. Therefore, the slope is stable after reinforcement measures were taken. (3) The cut slope stability is a complex problem. Taking the left cut slope of Xiangjiaba as example in this thesis, the deformation and slope stability were studied systematically by numerical modeling and monitor methods. The numerical results show: the displacement is gradually increasing along with the cutting, and the largest displacement is 27.5mm which located at the bench between the elevation 340 and 380. Some failure state units distribute near the undermining part and there is no linked failure state occurred from crest to bottom during cutting. After cutting, some failure units appeared at the ground surface between elevation 340 and 360. The increasing tense stress made the disturbed rock failed. The slope is stable after cutting by the monitor method, such as surface monitor, multipoint displacement meter, inclinometer and anchor cable tensometer. (4) The interaction between underground mining and slope stability is a common situation in mountainous. The slope deformation mechanism induced by underground mining may contributed significantly to slope destabilization. The Mabukan slope in xiangjiaba was analyzed to illustrate this. Failure mechanism and the slope stability were presented by numerical modeling and residual deformation monitor. The results show: the roof deformed to the free face and the floor uplift lightly to the free face. The subsidence basin is formed, but the subsidence and the horizontal movement is small, and there is no failure zone occurred. When the underground mining is going on, the roof deformation, subsidence and the horizontal movements begin increasing. The rock deformation near the free face is larger than the ground surface, and the interaction between these coal seams appeared. There are some tensile failures and shear failures occurred on the roof and floor, and a majority of failure is tensile failure. The roof deformation, subsidence and the horizontal movements increased obviously along with the underground mining. The failure characteristic is shear failure which means the tensile stress transformed to the compressive stress. So the underground mining will induced tensile stress first which lead to structure crack, subsequently the compressive stress appeared which result in slippage. The crest was subjected to horizontal tension which made the rock crack along with the joint. The long term residual deformation monitor demonstrates that the slope is stable after the underground mining stopped.
Resumo:
Landslide is a kind of serious geological hazards and its damage is very great. In recent years, landslides become more and more frequent along with increase of scale of engineering constructions and cause greater loss. Consequently, how to protect landslides has become important research subject in the engineering field. This paper improves the method how to compute landslide thrust and solves the irrational problem in the design of piles because of the irrational landslide thrust according to the theory and technology of existed anti-slide piles and pre-stressed cable anti-slide piles. Modern pre-stressing technology has been introduced and load balancing method has been used to improve the stressing behavior of anti-slide piles. Anchor cables, anti-slide piles and modern pre-stressing technology have been used to prevention complicated landslide. It is an important base to select values for the landslide thrust. An improved method to calculate design thrust of anti-slide piles has been presented in this paper on the base of residual thrust method by comparing existing methods to select values of landslide thrust in the design of anti-slide piles. In the method, residual landslide thrust behind the anti-slide piles and residual skid resistance before the piles has been analyzed, equitable distribution of residual landslide thrust behind the piles has been realized, and the method to select value of design thrust becomes more reasonable. The pre-stressed cable anti-slide piles are developed from the common anti-slide piles and are common method to prevent landslide. Their principle is that internal force of anti-slide piles is adjusted and size of section is diminished by changing constraint conditions of anti-slide piles. For landslides with deep slip surface and large scale of slopes, limitation of the method appears. Such landslides are in need of long piles and anchor cables which are not only non-economic but also can generate larger deformation and leave potential danger after prevention. For solving the problem, a new kind of anti-slide piles, inner pre-stressing force anti-slide piles, is presented in this paper, and its principle is that an additional force, which is generated in the inner anti-slide piles by arranging pre-stressed reinforcement or tight wire in a certain form in interior of anti-slide piles and stretching the steel reinforcement or tight wire, may balance out the internal force induced by landslide thrust whole or partly (load balancing method). The method will change bending moment which anti-slide piles are not good at bearing into compressive stress which piles are good at bearing, improve stressing performance of anti-slide piles greatly, diminish size of section, and make anti-slide piles not fissured in the natural service or postpone appearance of the fissures, and improve viability of anti-slide piles. Pre-stressed cable anti-slide piles and inner pre-stressing force anti-slide piles go by the general name of pre-stressed structure anti-slide piles in the paper, and their design and calculation method is also analyzed. A new calculation method is provided in the paper for design of anti-slide piles. For pre-stressed structure anti-slide piles, a new computation mode is firstly presented in the paper on the foundation of cantilever piles. In the mode, constraint form of load-bearing section of the anti-slide piles should be confirmed according to reservoir conditions in order to figure out amount of pre-stress of the anchor cables, and internal force should be analyzed for the load-bearing section of pre-stressed structure anti-slide piles so as to confirm anchorage section of anti-slide piles. Pre-stressed cables of the pre-stressed cable anti-slide piles can be arranged as required. This paper analyzes the load-bearing section of single-row and double-row pre-stressed cable anti-slide piles and provides a calculation method for design of the pre-stressed cable anti-slide piles. Inner pre-stressing force anti-slide piles are a new kind of structural style. Their load-bearing section is divided into four computation modes according to whether pre-stressed cables are applied for exterior of the anti-slide piles, and whether single-row or double-row exterior pre-stressed cables are applied. The load balancing method is used to analyze the computation modes for providing a method to design the inner pre-stressing force anti-slide piles rationally. Pre-stressed cable anti-slide piles and inner pre-stressing force anti-slide piles are applied to research on Mahe landfall in Yalong Lenggu hydropower station by the improved method to select value of design thrust of anti-slide piles. A good effect is obtained in the analysis.
Resumo:
The ionospheric parameter M(3000)F2 (the so-called transmission factor or the propagation factor) is important not only in practical applications such as frequency planning for radio-communication but also in ionospheric modeling. This parameter is strongly anti-correlated with the ionospheric F2-layer peak height hmF2,a parameter often used as a key anchor point in some widely used empirical models of the ionospheric electron density profile (e.g., in IRI and NeQuick models). Since hmF2 is not easy to obtain from measurements and M(3000)F2 can be routinely scaled from ionograms recorded by ionosonde/digisonde stations distributed globally and its data has been accumulated for a long history, usually the value of hmF2 is calculated from M(3000)F2 using the empirical formula connecting them. In practice, CCIR M(3000)F2 model is widely used to obtain M(3000)F2 value. However, recently some authors found that the CCIR M(3000)F2 model has remarkable discrepancies with the measured M(3000)F2, especially in low-latitude and equatorial regions. For this reason, the International Reference Ionosphere (IRI) research community proposes to improve or update the currently used CCIR M(3000)F2 model. Any efforts toward the improvement and updating of the current M(3000)F2 model or newly development of a global hmF2 model are encouraged. In this dissertation, an effort is made to construct the empirical models of M(3000)F2 and hmF2 based on the empirical orthogonal function (EOF) analysis combined with regression analysis method. The main results are as follows: 1. A single station model is constructed using monthly median hourly values of M(3000)F2 data observed at Wuhan Ionospheric Observatory during the years of 1957–1991 and compared with the IRI model. The result shows that EOF method is possible to use only a few orders of EOF components to represent most of the variance of the original data set. It is a powerful method for ionospheric modeling. 2. Using the values of M(3000)F2 observed by ionosondes distributed globally, data at grids uniformly distributed globally were obtained by using the Kriging interpolation method. Then the gridded data were decomposed into EOF components using two different coordinates: (1) geographical longitude and latitude; (2) modified dip (Modip) and local time. Based on the EOF decompositions of the gridded data under these two coordinates systems, two types of the global M(3000)F2 model are constructed. Statistical analysis showed that the two types of the constructed M(3000)F2 model have better agreement with the observational M(3000)F2 than the M(3000)F2 model currently used by IRI. The constructed models can represent the global variations of M(3000)F2 better. 3. The hmF2 data used to construct the hmF2 model were converted from the observed M(3000)F2 based on the empirical formula connecting them. We also constructed two types of the global hmF2 model using the similar method of modeling M(3000)F2. Statistical analysis showed that the prediction of our models is more accurate than the model of IRI. This demonstrated that using EOF analysis method to construct global model of hmF2 directly is feasible. The results in this thesis indicate that the modeling technique based on EOF expansion combined with regression analysis is very promising when used to construct the global models of M(3000)F2 and hmF2. It is worthwhile to investigate further and has the potential to be used to the global modeling of other ionospheric parameters.
Resumo:
It is a basic work to ascertain the parameters of rock mass for evaluation about stability of the engineering. Anisotropism、inhomogeneity and discontinuity characters of the rock mass arise from the existing of the structural plane. Subjected to water、weathering effect、off-loading, mechanical characters of the rock mass are greatly different from rock itself, Determining mechanical parameters of the rock mass becomes so difficult because of structure effect、dimension effect、rheological character, ‘Can’t give a proper parameter’ becomes one of big problems for theoretic analysis and numerical simulation. With the increment of project scale, appraising the project rock mass and ascertaining the parameters of rock mass becomes more and more important and strict. Consequently, researching the parameters of rock mass has important theoretical significance and actual meaning. The Jin-ping hydroelectric station is the first highest hyperbolic arch dam in the world under construction, the height of the dam is about 305m, it is the biggest hydroelectric station at lower reaches of Yalong river. The length of underground factory building is 204.52m, the total height of it is 68.83m, the maximum of span clearance is 28.90m. Large-scale excavation in the underground factory of Jin-ping hydroelectric station has brought many kinds of destructive phenomenon, such as relaxation、spilling, providing a precious chance for study of unloading parameter about rock mass. As we all know, Southwest is the most important hydroelectric power base in China, the construction of the hydroelectric station mostly concentrate at high mountain and gorge area, basically and importantly, we must be familiar with the physical and mechanical character of the rock mass to guarantee to exploit safely、efficiently、quickly, in other words, we must understand the strength and deformation character of the rock mass. Based on enough fieldwork of geological investigation, we study the parameter of unloading rock mass on condition that we obtain abundant information, which is not only important for the construction of Jin-ping hydroelectric station, but also for the construction of other big hydroelectric station similar with Jin-ping. This paper adopt geological analysis、test data analysis、experience analysis、theory research and Artificial Neural Networks (ANN) brainpower analysis to evaluate the mechanical parameter, the major production is as follows: (1)Through the excavation of upper 5-layer of the underground powerhouse and the statistical classification of the main joints fractures exposed, We believe that there are three sets of joints, the first group is lay fracture, the second group and the fourth group are steep fracture. These provide a strong foundation for the following calculation of and analysis; (2)According to the in-situ measurement about sound wave velocity、displacement and anchor stress, we analyses the effects of rock unloading effect,the results show a obvious time-related character and localization features of rock deformation. We determine the depth of excavation unloading of underground factory wall based on this. Determining the rock mass parameters according to the measurement about sound wave velocity with characters of low- disturbing、dynamic on the spot, the result can really reflect the original state, this chapter approximately the mechanical parameters about rock mass at each unloading area; (3)Based on Hoek-Brown experienced formula with geological strength index GSI and RMR method to evaluate the mechanical parameters of different degree weathering and unloading rock mass about underground factory, Both of evaluation result are more satisfied; (4)From the perspective of far-field stress, based on the stress field distribution ideas of two-crack at any load conditions proposed by Fazil Erdogan (1962),using the strain energy density factor criterion (S criterion) proposed by Xue changming(1972),we establish the corresponding relationship between far-field stress and crack tip stress field, derive the integrated intensity criterion formula under the conditions of pure tensile stress among two line coplanar intermittent jointed rock,and establish the corresponding intensity criterion for the exploratory attempt; (5)With artificial neural network, the paper focuses on the mechanical parameters of rock mass that we concerned about and the whole process of prediction of deformation parameters, discusses the prospect of applying in assessment about the parameters of rock mass,and rely on the catalog information of underground powerhouse of Jinping I Hydropower Station, identifying the rock mechanics parameters intellectually,discusses the sample selection, network design, values of basic parameters and error analysis comprehensively. There is a certain significance for us to set up a set of parameters evaluation system,which is in construction of large-scale hydropower among a group of marble mass.
Resumo:
The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.
Resumo:
The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for effluents of textile finishing industry ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the COD. However, little is known about the reaction intermediates and products formed during ozonation. This work focuses on the oxidative degradation of purified (>90%), hydrolyzed Reactive Red 120 (Color Index), a widely used azo dye in the textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the dye in ultra pure water was performed in a laboratory scale cylindrical batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (53 5 nm), was almost complete after 150 min with an ozone concentration of 12.8 mg/l. The TOC/TOC0 ratio was about 74% and the COD was diminished to 46% of the initial value. The BOD5/COD ratio increased from 0.01 to 0.14. To obtain detailed information on the reaction processes during ozonation and the resulting oxidation products organic and inorganic anions were analyzed. Oxidation and cleavage of the azo group yielded nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused an increase in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.