122 resultados para GUICHEN BAY
Resumo:
The abundance and biomass of ciliated protozoa and copepod nauplii were investigated at 21 grid stations and two anchored stations in the Laizhou Bay, Bohai Sea, China in June 1998. Dilution incubations were carried out to investigate micro-zooplankton grazing pressure at the anchored stations during spring tide and neap tide. The dominant species were Tintinnopsis amoyensis, T. chinglanensis, T. pallida and aloricate ciliates. A total of 13 species of tintinnids were found. The total abundance of ciliates and nauplii ranged from 30 to 2390 ind l(-1) at grid stations. Tintinnopsis amoyensis was the only ciliate found at the anchored stations and in concentrations which varied from 0 to 6700 ind l(-1). The spatial distribution of ciliates was patchy. Tintinnopsis amoyensis and T. pallida were distributed in the Weihe River mouth and Xiaoqinghe River mouth respectively. The aloricate ciliates, T. chinglanensis and Codonellopsis ostenfeldi dominated offshore in sequence. The water mixing process may affect the spatial pattern of the dominant ciliate species. The abundance and biomass of copepod nauplii were in the range of 0-140 ind l(-1) and 0-7 mu g C l(-1) respectively, with the peak appearing at grid station 15. The total biomass of ciliates and copepod nauplii was in the range of 1(.)5-25 mu g C l(-1). Water column biomass of ciliates and nauplii varied from 2(.)37 to 52(.)3 mg C m(-2). At the anchored stations, the phytoplankton growth rates ranged from undetectable to 0 21 d(-1) and micro-zooplankton grazing rates from 0 13 to 0(.)57 d(-1). The grazing pressure of micro-zooplankton were 12 to 43% of the chlorophyll standing stock and 84 to 267% of the chlorophyll (C) 2000 Academic Press.
Resumo:
Since 1988 growers of bay scallop Argopecten irradians in China have been experiencing mortality in their cultured stocks. Although poorly documented, mortality apparently began near Qingdao and has since spread to other areas of Shandong and Liaoning provinces. Samples of cultured scallops were collected from several growing areas in these provinces and analyzed by histological methods for pathogens. An unidentified haplosporidian parasite was observed in a high proportion of scallops from two of the stocks examined. Most infections were of low intensity, but one heavy infection was also observed. Only plasmodia stages were observed; they occurred intercellularly in connective tissues throughout the scallops. Plasmodia were spherical to oval, varied from 4.0 to 17.0 mu m in diameter and contained from 2 to 18 nuclei. Absence of spores prevented generic assignment of the parasite. The source and pathogenicity of the haplosporidian could not be assessed without additional research. No other microbial parasites (i.e. rickettsia-like, chlamydia-like or kidney coccidia) were observed in any of the scallops examined.
Resumo:
Sediment geochemical technique was employed to assess how the sediment records reflect the environmental changes of Jiaozhou Bay, a semi-enclosed bay adjacent to Qingdao, China. In the past hundred years, Jiaozhou Bay has been greatly impacted by human interventions. A dated core sediment by Pb-210 chronology was analyzed for trace metals including Li, Cd, Cr, Pb, Cu, Ni, Co, Zn together with C, N, P and BSi. Based on the research, the development of Jiaozhou Bay environment in the past hundred years can be divided into three stages: (1) before the 1980s characterized by relatively low sedimentation rate, weak heavy metal pollution and scarce eutrophication; (2) from the 1980s to 2000, accelerating in the 1990s, during which high sedimentation rates, polluted by heavy metals and the frequent occurrence of red tide; (3) after 2000, the period of the improvement of environment, the whole system has been meliorated including the heavy metal pollution and hypernutrification. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Partial pressure of CO2 (pCO(2)) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO(2) in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO(2) varied from 168 to 2 264 mu atm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m(-2) d(-1) in average of 24.4 +/- 16.5 mmol m(-2) d(-1). Although the area studied was estimated only 2 x 10(4) km(2), it emitted (5.9 +/- 4.0) x 10(3) tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.
Resumo:
Organic carbon (OC), total nitrogen (TN), and Pb-210 in core sediment were measured to quantify the burial of organic carbon and the relative importance of allochthonous and autochthonous contributions during the past one hundred years in Jiaozhou Bay, North China. The core sediment was dated using Pb-210 chronology, which is the most promising method for estimation of sedimentation rate on a time scale of 100-150 years. The variation of the burial flux of organic carbon in the past one hundred years can be divided into the following three stages: (1) relatively steady before 1980s; (2) increasing rapidly from the 1980s to a peak in the 1990s, and (3) decreasing from the 1990s to the present. The change is consistent with the amount of solid waste and sewage emptied into the bay. The OC:TN ratio was used to evaluate the source of organic carbon in the Jiaozhou Bay sediment. In the inner bay and bay mouth, the organic carbon was the main contributor from terrestrial sources, whereas only about half of organic carbon was contributed from terrestrial source in the outer bay. In the inner bay, the terrestrial source of organic carbon showed a steady change with an increase in the range of 69%-77% before 1990 to 93% in 2000, and then decreased from 2000 because of the decrease in the terrestrial input. In the bay mouth, the percentage of organic carbon from land reached the highest value with 94% in 1994. In the outer bay, the sediment source maintained steady for the past one hundred years.
Resumo:
The seasonal evolution of dissolved inorganic carbon (DIC) and CO2 air-sea fluxes in the Jiaozhou Bay was investigated by means of a data set from four cruises covering a seasonal cycle during 2003 and 2004. The results revealed that DIC had no obvious seasonal variation, with an average concentration of 2035 mu mol kg(-1) C in surface water. However, the sea surface partial pressure of CO2 changed with the season. pCO(2) was 695 mu atm in July and 317 mu atm in February. Using the gas exchange coefficient calculated with Wanninkhof's model, it was concluded that the Jiaozhou Bay was a source of atmospheric CO, in spring, summer, and autumn, whereas it was a sink in winter. The Jiaozhou Bay released 2.60 x 10(11) mmol C to the atmosphere in spring, 6.18 x 10(11) mmol C in summer, and 3.01 x 10(11) mmol C in autumn, whereas it absorbed 5.32 x 10(10) mmol C from the atmosphere in winter. A total of 1.13 x 10(11) mmol C was released to the atmosphere over one year. The behaviour as a carbon source/sink obviously varied in the different regions of the Jiaozhou Bay. In February, the inner bay was a carbon sink, while the bay mouth and the Outer bay were carbon sources. In June and July, the inner and Outer bay were carbon sources, but the strength was different, increasing from the inner to the outer bay. In November, the inner bay was a carbon source, but the bay Mouth was a carbon sink. The outer bay was a weaker CO2 Source. These changes are controlled by many factors, the most important being temperature and phytoplankton. Water temperature in particular was the main factor controlling the carbon dioxide system and the behaviour of the Jiaozhou Bay as a carbon source/sink. The Jiaozhou Bay is a carbon dioxide source when the water temperature is higher than 6.6 degrees C. Otherwise, it is a carbon sink. Phytoplankton is another controlling factor that may play an important role in behaviour as a carbon source or sink in regions where the source or sink nature is weaker.
Response of the diatom flora in Jiaozhou Bay, China to environmental changes during the last century
Resumo:
The diatom flora in a 164 cm long sediment core obtained from Jiaozhou Bay (Yellow Sea, China) was analyzed in order to trace the response of diatoms to environmental changes over the past 100 years. The sediment core was dated by Pb-210 and Cs-137 and represented approximately 100 years (1899-2001 A.D.). The flora was mainly composed of centric diatoms (59-96%). The concentration of diatoms declined sharply above 30 cm (after similar to 1981 A.D.), while the dominant species changed from Thalassiosira anguste-lineatus, Thalassiosira eccentria, Coscinodiscus excentricus, Coscinodiscus concinnus and Diploneis gorjanovici to Cyclotella stylorum and Paralia sulcata. Species richness decreased slightly, and the cell abundance of warm-water species increased. We argue that these floral changes were probably caused by climate change in combination with eutrophication resulting from aquaculture and sewage discharge. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon, nitrogen, phosphorus, silicon composition of cultured two different sized phytoplankton common species of Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay were measured. Carbon, nitrogen, phosphorus, silicon contents in cell were. obvious higher in T. rotula than in S. costatum, but the percents of nitrogen, phosphorus, silicon contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of nitrogen,phosphorus,silicon in S. costatum were much higher than those in T. rotula, particularly silicon, the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilating silicon, which is beneficial to its becoming a major dominant species in relative short silicon of the Jiaozhou Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different sized suspended particulates (mainly phytoplankton) in the Jiaozhou Bay, which was caused by the changes of environment. High contents of carbon, nitrogon and relative low phosporus,silicon, high molar ratio of nitrogen to phosphorus (far higher than Redfield value) and low ratio of silicon to phosphorus and silicon to nitrogen (far lower than Redfield values) in the two diatoms and different sized suspended particulates were consistent with those in the seawater. Relative short silicon in the seawater and phytoplankton showed that silicon was possibly affectting phytoplankton growth in the Jiaozhou Bay.
Resumo:
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.
Resumo:
The spatial distribution of stage-specific abundance and reproduction of the copepod Paracalanus parvus were studied from October 2005 to September 2006 in the Jiaozhou Bay. This copepod occurred continuously in this bay throughout the year. The species reached the lowest abundance in April and peaked in June. From October to December, distribution center mainly occurred in offshore water and at the mouth of the bay. In winter, early copepodites and adults gradually decreased and till February, most of the population was only comprised of CIV-CV stages. Overwintering copepodites matured in March and males tended to mature before female. From May to September, each stage occurred in the population and gradually reached high abundance. Temperature and chlorophyll a (Chl-a) concentration in the three stations can't clearly explain the seasonal variation in stage-specific abundance, so we surmised the important effect of the Yellow Sea. Egg production rate (EPR) reached its lowest in winter and peaked in June at 60.8 eggs female(-1) day(-1) in nearshore water. In the warming period, EPR in nearshore water was statistically higher and EPR > 10 eggs female(-1) day(-1) lasted longer than that in offshore water, showing the importance of nearshore water for recruitment of R parvus. Our study showed that EPR was positively related to temperature and total chlorophyll a in offshore water and mouth of the bay. In nearshore water, the relationships between EPR and temperature and Chl-a in three size fractions were not the same as those in offshore water, suggesting complicated ecosystem in such a eutrophic area in warming period. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Data collected from 12 marine monitoring stations in Daya Bay from 1982 to 2004 reveal a substantial change in the ecological environment of this region. The average N/P ratio increased from 1.377 in 1985 to 49.09 in 2004. Algal species changed from 159 species of 46 genera in 1982 to 126 species of 44 genera in 2004. Major zooplankton species went from 46 species in 1983 to 36 species in 2004. The annual mean biomass of benthic animals was recorded at 123.10 gm(2) in 1982 and 126.68 g m(2) in 2004. Mean biomass and species of benthic animals near nuclear power plants ranged froth 317.9 g m(2) in 1991 to 45.24 g m(2) in 2004 and from 250 species in 1991 to 177 species in 2004. A total of 12-19 species of hermatypic corals and 13 species of mangrove plants were observed in Daya Bay from 1984 to 2002. 2008 Elsevier Ltd. All rights reserved.
Resumo:
The source and significance. of two mitrients, nitrogen. and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton, maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d(-1) outside the bay, 0.42 and 0.32 d(-1) inside the bay and 0.98 and 0.62 d(-1) in the harbor respectively. Outside the bay, the remineralized nitrogen (K-r = 24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(K-r = 3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (K-r = 3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that, nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.
Resumo:
Both in-field chemical investigation and in the laboratory toxic tests were carried out to systematically understand the pollution status of cadmium (Cd) and zinc (Zn) in Bohai Bay. Samples collected from surface seawater were determined to describe the distributions of Cd and Zn in Bohai Bay. The average values in our study of Cd and Zn were 0.15 mu g/L and 19.68 mu g/L, respectively. Both of them were lower than the first class limit of seawater quality standard in China. In the laboratory, antioxidant enzymes [SOD (Cu/Zn-SOD, Mn-SOD), CAT], lipid peroxidation (MDA), phase I and phase II enzymes (CYP4501A and GST) were investigated in the bivalves Chlamys farreri exposed to Cd and Zn at the concentration levels of Bohai Bay seawater, which were obtained from our in-field investigation. The reduced SOD, CAT, and EROD (7-ethoxyresorufin-O-deethylase) activities (with the inhibitory rate of 16.8%, 31.5%, and 51.6%, respectively) in Cd treatment were observed and resulted in obvious lipid peroxidation damage. However, treatment of Zn showed elevations in SOD and GST by 13.3% and 29.9%, respectively, and with no influence on lipid peroxidation. In summary, seawater quality in Bohai Bay seawater was ranked as good in general, but it seemed that Cd might possess a potential environmental risk by effecting pro-oxidant/antioxidant balance and phase I detoxification in C. farreri.
Resumo:
Manila clams (Ruditapes philippinarum) and sediments were collected bimonthly during 2007 at five locations in Jiaozhou Bay near Qingdao, China, to determine heavy metal concentrations and to assess the validation of R. philippinarum as a metal biomonitor. Concentrations of heavy metals in clam soft tissues ranged between 0.75 and 3.31, 0.89 and 15.20, 5.70 and 26.03, 52.12 and 110.33, 10.30 and 72.34, 9.64 and 28.60, and 3.15 and 52.75 mu g g (-aEuro parts per thousand 1) dry weight for Cd, Pb, Cu, Zn, Mn, Cr, and Ni, respectively. Most of the highest values occurred at the northeast bay and the lowest values occurred at the western part. Regarding seasonal variation, relatively high tissue metal concentrations were observed during October or December. A similar pattern was also found in habitat sediments. There was a strong correlation between the concentrations of Cd, Pb, Zn, Mn, Cr, and Ni in soft tissues and surrounding sediments. It is indicated that R. philippinarum could be used as a biomonitor for heavy metal contamination in Jiaozhou Bay.
Resumo:
JGOFS results showed that the ocean is a major sink for the increasing atmospheric carbon dioxide resulting from human activity. However, the role of the coastal seas in the global carbon cycling is poorly understood. In the present work, the inorganic carbon (IC) in the Yangtze River Estuary and Jiaozhou Bay are studied as examples of offshore sediments. Sequential extraction was used to divide inorganic carbon in the sediments into five forms, NaCl form, NH3 H2O form, NaOH form, NH2OH HCl form and HCl form. Studied of their content and influencing factors were also showed that NaCl form < NH3 H2O form < NaOH form < NH2OH HCl form < HCl form, and that their influencing factors of pH, Eh, Es, water content, organic carbon, organic nitrogen, inorganic nitrogen, organic phosphorus and inorganic phosphorus on inorganic carbon can be divided into two groups, and that every factor has different influence on different form or on the same form in different environment. Different IC form may transform into each other in the early diagenetic process of sediment, but NaCl form, NH3 H2O form, NaOH form and NH2OH HCl form may convert to HCl form ultimately. So every IC form has different contribution to carbon cycling. This study showed that the contribution of various form of IC to the carbon cycle is in the order of NaOH form > NH2OH HCl form > NH3 H2O form > NaCl form > HCl form, and that the contribution of HCl form contributes little to carbon cycling, HCl form may be one of end-result of atmospheric CO2. So Yangtze River estuary sediment may absorb at least about 40.96x10(11) g atmospheric CO2 every year, which indicated that offshore sediment play an important role in absorbing atmospheric CO2.