103 resultados para Freshwater plankton
Resumo:
Long-term changes In the crustacean zooplankton community (calanoid and cyclopoid copepods and cladocerans) were studied in Lake Donghu, a shallow and eutrophic Chinese lake. This lake had been earlier stocked with two pump Alter-feeding Ashes, silver carp (Hypopthalmichthys molitrix) and bighead carp (Aristichthys nobilis). During the 1950s and the mid-1980s, the ratio of copepods to cladocerans was relatively stable but showed a general increase thereafter. From the early-1980s to the 1990s, calanoid/cyclopoid ratios decreased obviously. In the 1990s, Cyclops vicinus, Diaphanosoma brachyurum, and Moina micrura were dominant the abundance of C. vicinus and M. micrura increased significantly; and D, brachyurum showed a substantial decrease. The study shows that under extremely high pressure of Ash predation, the species which could recover rapidly from fish predation would be the most likely to survive and increase their numbers.
Freshwater fishes distribution in Taiwan and continent of China and its biogeographical significance
Resumo:
Through the comparative analysis of primary freshwater fishes in Chinese continent and the Taiwan Island, we summarize the three distinctions of distribution of freshwater fishes in these areas: (i) there exists a high similarity of freshwater fish fauna between Taiwan and the southeastern shore of the continent; (ii) some species of freshwater fish are found both in the Taiwan Island and East Himalayans; (iii) different freshwater fishes have different distributions in island arch of western Pacific where Taiwan is located, but the distribution pattern shows a similarity to that of adjacent continent. The characteristic distributions of the fishes are closely related to the change in paleogeography and geology in the area. The parsimony analysis of endemicity (PAE analysis) indicates that the three distribution patterns can be explained by the vicariance theory.
Resumo:
Stocking experiments with Eriocheir sinensis were conducted in two small, shallow lakes to study its growth pattern in 1994-1997. For the initially immature crabs, carapace width (CW) increases from 21.2 +/- 0.4 mm (mean +/- s.e.) for females and 22.3 +/- 0.5 mm for males in January, to 65.4 +/- 0.5 mm for females and 66.9 +/- 0.6 mm for males in October. There is no significant difference in CW and carapace length (CL), although there is a large difference in body weight (BW) between sexes in every month from January to August when crabs are juvenile, however, there are significant differences in CW, CL. and BW between sexes after September when the crabs become sexually mature. The growth curve from January to October fits a logistic equation and may be expressed as CW = 75.7 (1 + exp (0.914 - 0.011t))(-1) for females, and CW = 77.5 (1 + exp (0.889 - 0.011t))-1 for males, where CW is in mm, t in days. For precocious crabs (reaching maturity by the first autumn, CW does not change much from January to July, which indicates that precocious crabs stop growing. Like juveniles, the precocious crabs show no differences in CW and CL, but do show a statistically significant difference in BW between sexes.
Resumo:
Parodontophora limnophila sp. nov. is described from Poyang Lake, the largest freshwater lake of China. It is characterized by having an amphid with its posterior end close to the base of the stoma, relatively short cephalic setae, opisthocephalic setae arranged as two subdorsal groups of three longitudinally arranged setae and two single subventral setae, excretory pore at the level of the anterior part of the stoma and renette gland 34-47% of the oesophageal length. To date, the new species is the only Parodontophora species found in freshwater habitats.
Resumo:
In contrast to the relatively well documented impact of particulate-feeding fish on zooplankton communities, little attention has been devoted to the impact of filter-feeding fish. Filter-feeding silver and bighead carp are the most intensively cultured fish species in Asia and comprise much of the production of Chinese aquaculture. However, little information is known about the impact of either fish on the zooplankton community. Long-term changes in the Copepoda community (1957-1996) were studied at two sampling stations of a subtropical Chinese lake (Lake Donghu) dominated by silver and bighead carp. For both calanoids and cyclopoids, the littoral station (I) was much more resource profitable than the pelagic station (II). There has been a tremendous increase in the annual fish catch over the past 30 years due to the increased stocking with fingerlings of the two carp species. There was a notably higher fish density at Station I than at Station II. Cyclopoid abundance was notably higher at Station I than at Station II during the 1950s to the 1980s, while the reverse became true in the 1990s. This is probably because when fish abundance increased to an extremely high level, the impact of fish predation on the cyclopoids became more important than that of food resources at the littoral station. At both stations, cyclopoid abundance was relatively low in spite of the presence of abundant prey. Similarly, calanoid density did not differ significantly between the two stations in the 1950s and 1960s, but was significantly lower at Station I than at Station II during the 1980s and 1990s. Such changes are attributed to the gradient of fish predation between the stations and an increasing predation pressure by the fish. The increased fish predation also correlated with a shift in summer-dominant calanoids from larger species to smaller ones. In conclusion, the predaceous cyclopoids are affected by fish predation to a much lesser extent than the herbivorous calanoids, and therefore increased predation by filter-feeding fish results in a definite increase in the cyclopoid/calanoid ratio. Predation by filter-feeding fish has been a driving force in shaping the copepod community structure of Lake Donghu during the past decades.
Resumo:
The community structure of zooplankton was studied in a eutrophic, fishless Japanese pond. The ecosystem was dominated by a dinoflagellate, Ceratium hirundinella, two filter-feeding cladocerans, Daphnia rosea and Ceriodaphnia reticulata, and an invertebrate predator, the dipteran Chaoborus flavicans. The midsummer zooplankton community showed a large change in species composition (the Daphnia population crashed) when a heavy Ceratium bloom occurred. It is shown that (i) the rapid density decline of D.rosea in mid-May was mainly caused by a shortage of edible phytoplankton, which was facilitated by the rapid increase in C.hirundinella abundance; (ii) the low density of D.rosea in June-July was considered to be mainly caused by the blooming of Ceratium hirundinella (which may inhibit the feeding process of D.rosea), while predation by C.flavicans larvae, the changing temperature, the interspecific competition and the scarcity of edible algae were not judged to be important; (iii) the high summer biomass of the planktonic C.flavicans larvae was maintained by the bloom of C.hirundinella, because >90% of the crop contents of C.flavicans larvae were C.hirundinella during this period. The present study indicates that the large-sized cells or colonies of phytoplankton are not only inedible by most cladocerans, but the selective effect of the blooming of these algae can also influence the composition and dominance of the zooplankton community, especially for the filter-feeding Cladocera, in a similar way as the selective predation by planktivorous fish. The large-sized phytoplankton can also be an important alternative food for ominivorous invertebrate predators such as Chaoborus larvae, and thus may affect the interactions between these predators and their zooplanktonic prey. In this way, such phytoplankton may play a very important role in regulating the dynamics of the aquatic food web, and become a driving force in shaping the community structure of zooplankton.
Resumo:
Seasonal variation of the kinetic parameters of total alkaline phosphatase activity (APA) was studied in a shallow Chinese freshwater lake (Donghu Lake). At the three experimental stations the values of V-max of APA were higher and the negative correlation between orthophosphate and the total APA specific activity (V-max/Chl.) was stronger during summer (from June to September) P depletion. At the same time, the values of Michaelis constant (K-m) of APA at the three stations decreased. Phytoplankton seem to compensate for their phosphorus deficiency not only by an increase in enzyme production but also by an improved ability to use low substrate concentrations. (C) 1997 Elsevier Science Ltd.
Resumo:
Filtrable phosphorus compounds in a shallow Chinese freshwater lake (Donghu Lake) were fractionated by Sephadex G-25 gel-filtration chromatography. Some portions of those compounds released soluble reactive phosphorus upon irradiation with low dose ultraviolet light. Catalase and a hydroxyl radical scavenger (mannitol) markedly prevented photosensitive phosphorus release. The observed effects may be explained by the action of oxidizing reagents such as hydroxyl radicals, produced in photochemical reactions between UV irradiation and humic substances in the water. There was a strong seasonality in UV-sensitive P (UVSP) release. Michaels constants (K-m) of total alkaline phosphatase in the lake water showed a direct positive relation to UVSP. Plot of K-m against the UVSP/phosphomonoester ratio reveals a strong relationship between the two variables. These results suggest that in some situations UVSP may be a competitive inhibitor of alkaline phosphatase activity in the lake. The competitive inhibition of fractionated UVSP on alkaline phosphatase reagent (Sigma) apparently supports this hypothesis.
Resumo:
A variety of short-lived, reactive chemical species (i.e. free radicals and excited state species) are known to be photochemically produced in natural waters. Some of these transients may strongly affect chemical and biological processes, and they have been implicated in the degradation of organic pollutants and natural organic compounds in aqueous environments. Previous studies demonstrated that the highly reactive hydroxyl radical (OH) is photochemically formed in seawater. However, the quantitative importance of this key species in the sea has not been previously studied because of past analytical limitations. By using a highly sensitive probe based on α-H atom abstraction from methanol, we were able to measure production rates and steady-state concentrations of photochemically produced OH radicals in coastal and open ocean seawater and freshwaters. The validity of the method was tested by intercalibrating with an independent, OH-specific reaction, hydroxylation of benzoic acid, and also by competition kinetics experiments. Our OH production rates and steady-state concentrations for freshwaters are in excellent agreement with those measured by previous investigators for similar waters. In contrast, for seawater, the values we measured are 1–3 orders of magnitude higher than previously predicted by models, indicating that there is a major unknown photochemical OH source (s) in seawater.