115 resultados para First-principles calculation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calculations of the electronic structure and the density of states of GaN with Mn are carried out by means of first-principles plane-wave pesudopotential method based on density functional theory. The results reveal a 100% spin polarized impurity band in band structure of Ga1-xMnxN due to hybridization of Mn 3d and N 2p orbitals. The material is half metallic and suited for spin injectors. In addition, a peak of refractive index can be observed near the energy gap. The absorption coefficient increases in the UV region with the increase of the Mn content.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ferroelectricity of rhombohedral PbTiO3 under uniaxial compression is investigated from first-principles study. Upon compression, the ferroelectricity decreases until a critical stress of -29 GPa and then increases with a further increase of the magnitude of the uniaxial compressive stress. We also find that uniaxial compression could enhance piezoelectricity and that the maximum piezoelectric coefficient d(33) occurs at sigma(33)=-49 GPa, which supports the experimentally observed piezoelectric behavior in rhombohedral Pb(Mg1/3Nb2/3O3)-0.32PbTiO(3) [Q. Wan, C. Chen, and Y. P. Shen, J. Appl. Phys. 98, 024103 (2005)]. Our calculated results show that the Pb, Ti, and O atoms have different contributions to the total polarization with increasing the magnitude of uniaxial compressive stress, and that when -sigma(33)>55 GPa, the Ti atoms no longer have contributions to the polarization, which leads to the changes of ferroelectricity and piezoelectricity. (C) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lattice constants, elasticity, band structure and piezoelectricity of hexagonal wideband gap BexZn1-xO ternary alloys are calculatedusing firstprinciples methods. The alloys' lattice constants obey Vegard's law well. As Be concentration increases, the bulk modulus and Young's modulus of the alloys increase, whereas the piezoelectricity decreases. We predict that BexZn1-xO/GaN/substrate (x = 0.022) multilayer structure can be suitable for high-frequency surface acoustic wave device applications. Our calculated results are in good agreement with experimental data and other theoretical calculations. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetragonal PbTiO3 under uniaxial stress along the c-axis is investigated from first-principles. The structural parameters, polarization, and squares of the lowest optical phonon frequencies for E(1TO) and A(1)(1TO) modes at Gamma show abrupt changes near a stress sigma(c) of 1.04 GPa, which is related to the dramatic change of elastic constant c(33) resulting from the uniaxial stress applied along the c-axis. We also find that the uniaxial compressive stress could enhance the piezoelectric stress coefficients, whereas the uniaxial tensile stress could enhance the piezoelectric strain coefficients. It is also found that when the magnitude of uniaxial compressive stress sigma(33) is greater than 12 GPa, PbTiO3 is transformed to the paraelectric tetragonal phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mg-Ga acceptor energy levels in GaN and random Al8In4Ga20N32 quaternary alloys are calculated using the first-principles band-structure method. We show that due to wave function localization, the MgGa acceptor energy level in the alloy is significantly lower than that of GaN, although the two materials have nearly identical band gaps. Our study demonstrates that forming AlxInyGa1-x-yN quaternary alloys can be a useful approach to lower acceptor ionization energy in the nitrides and thus provides an approach to overcome the p-type doping difficulty in the nitride system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our Raman measurement indicates that the intensity of the peaks (510 and 645 cm(-1)) related to nitrogen concentration is enhanced in MgZnO compared with that in ZnO. Using first-principles band structure methods, we calculated the formation energy and transition energy level for nitrogen acceptor in ZnO and random MgxZn1-xO (with x=0.25) alloy. Our calculations show that the incorporation of nitrogen can be enhanced as Mg is alloyed into ZnO, which agrees with our experiments. The acceptor energy level deeper in the alloy ascribes to the downward shift of the valence-band maximum edge in the presence of magnesium. (c) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Elastic constants, the bulk modulus, Young's modulus, band-gap bowing coefficients, spontaneous and piezoelectric polarizations, and piezoelectric coefficients of hexagonal AlxGa1-xN ternary alloys are calculated using first-principles methods. The fully relaxed structures and the structures subjected to homogeneous biaxial and uniaxial tension are investigated. We show that the biaxial tension in the plane perpendicular to the c axis and the uniaxial tension along the c axis all reduce the bulk modulus, whereas they reduce and enhance Young's modulus, respectively. We find that the biaxial and uniaxial tension can enhance the bowing coefficients. We also find that the biaxial tension can enhance the total polarization, while the uniaxial tension will suppress the total polarization. (C) 2008 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles electronic structure calculations we find that the titanium vacancy and divacancy may be responsible for the unexpected ferromagnetism in undoped anatase TiO2. An isolated titanium vacancy produces a magnetic moment of 3.5 mu(B), and an isolated titanium divacancy produces a magnetic moment of 2.0 mu(B). The origin of the collective magnetic moments is the holes introduced by the titanium vacancy or divacancy in the narrow nonbonding oxygen 2p(pi) band. At the center of the divacancy, an O-2 dimer forms during the relaxation, which lowers the total energy of the system and leads to the decrease in the total magnetic moment due to a hole compensation mechanism. For both the two native defects, the ferromagnetic state is more stable than the antiferromagnetic state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quantum confinement effect, electronic properties, and optical properties of TiO2 nanowires in rutile structure are investigated via first-principles calculations. We calculate the size- and shape-dependent band gap of the nanowires and fit the results with the function E-g = E-g(bulk) + beta/d(alpha). We find that the quantum confinement effect becomes significant for d < 25 angstrom, and a notable anisotropy exists that arises from the anisotropy of the effective masses. We also evaluate the imaginary part of the frequency-dependent dielectric function [epsilon(2)(omega)] within the electric-dipole approximation, for both the polarization parallel [epsilon(parallel to)(2)(omega)] and the perpendicular [epsilon 1/2(omega)] to the axial (c) direction. The band structure of the nanowires is calculated, with which the fine structure of epsilon(parallel to)(2)(omega) has been analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the first-principles band-structure method, we investigate the p-type doping properties and band structural parameters of the random Ga1-xInxN1-yAsy quaternary alloys. We show that the Mg-Ga substitution is a better choice than ZnGa to realize the p-type doping because of the lower transition energy level and lower formation energy. The natural valence band alignment of GaAs and GaInNAs alloys is also calculated, and we find that the valence band maximum becomes higher with the increasing in composition. Therefore, we can tailor the band offset as desired which is helpful to confine the electrons effectively in optoelectronic devices. (C) 2008 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The atomic and electronic structures of saturated and unsaturated GaN nanotubes along the [001] direction with (100) lateral facets are studied using first-principles calculations. Atomic relaxation of nanotubes shows that appreciable distortion occurs in the unsaturated nanotubes. All the nanotubes considered, including saturated and unsaturated ones, exhibit semiconducting, with a direct band gap Surface states arisen from the 3-fold-coordinated N and Ga atoms at the lateral facets exist inside the bulklike band gap. When the nanotubes are saturated with hydrogen, these dangling bond bands are removed from the band gap, but the band gap decreases with increasing the wall thickness of the nanotubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.