208 resultados para Envelope Function
Resumo:
A grating-lens combination unit is developed to form a scaling self-transform function that can self-image on scale. Then an array of many such grating-lens units is used for the optical interconnection of a two-dimensional neural network, and experiments are carried out. We find that our idea is feasible, the optical interconnection system is simple, and optical adjustment is easy. (C) 1998 Optical Society of America.
Resumo:
A method of computing the ambiguity function (AF) for a circularly symmetric pupil function is presented. The AFs of a clear aperture and two shaded apertures are considered in detail and an explicit expression for the first of these AFs is given. We explain these results in the context of the well-known optical transfer function theory and show a primary application of these computations. A good analytic approximation is also introduced, providing an alternative method for calculating the AF, in a simpler way.
Resumo:
We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.
Resumo:
On the basis of the space-time Wigner distribution function (STWDF), we use the matrix formalism to study the propagation laws for the intensity moments of quasi-monochromatic and polychromatic pulsed paraxial beams. The advantages of this approach are reviewed. Also, a least-squares fitting method for interpreting the physical meaning of the effective curvature matrix is described by means of the STWDF. Then the concept is extended to the higher-order situation, and what me believe is a novel technique for characterizing the beam phase is presented. (C) 1999 Optical Society of America [S0740-3232(99)001009-1].
Resumo:
Analytic propagation expressions of pulsed Gaussian beam are deduced by using complex amplitude envelope representation and complex analytic signal representation. Numerical calculations are given to illustrate the differences between them. The results show that the major difference between them is that there exists singularity in the beam obtained by using complex amplitude envelope representation. It is also found that singularity presents near propagation axis in the case of broadband and locates far from propagation axis in the case of narrowband. The critical condition to determine what representation should be adopted in studying pulsed Gaussian beam is also given. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
引入角度偏差、位移偏差作为拼接光栅系统的物理参数,定义了拼接光栅的孔径函数,利用傅里叶角谱理论研究了高斯脉冲入射拼接光栅压缩器后的远场分布特性。研究表明;出射脉冲仍然是高斯型脉冲,但包络中心发生偏移,偏移量由角度偏差量和光束口径决定;位移偏差引入的相位随着拼接光栅压缩器传递,其对远场焦斑的影响,取决于每片子光栅的非整数倍光栅常数的横向位移偏差和纵向位移偏差的综合作用。通过数值计算得到了各维偏差对阵列光栅压缩器空域特性的影响,计算表明:光栅面外角度偏差(俯仰左右)和条纹平行度偏差都必须控制在1μrad以内,
Resumo:
By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions. (c) 2006 Optical Society of America.