112 resultados para ENERGY ANALYSIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic nanoparticles of nickel substituted cobalt ferrite (NixCo1-xFe2O4:0 <= x <= 1) have been synthesized by co-precipitation route. Particles size as estimated by the full width half maximum (FWHM) of the strongest X-ray diffraction (XRD) peak and transmission electron microscopy (TEM) techniques was found in the range 18-28 +/- 4 nm. Energy dispersive X-ray (EDX) analysis confirms the presence of Co, Ni, Fe and oxygen as well as the desired phases in the prepared nanoparticles. The selective area electron diffraction (SAED) analysis confirms the crystalline nature of the prepared nanoparticles. Data collected from the magnetization hysteresis loops of the samples show that the prepared nanoparticles are highly magnetic at room temperature. Both coercivity and saturation magnetization of the samples were found to decrease linearly with increasing Ni-concentration in cobalt ferrite. Superparamagnetic blocking temperature as determined from the zero field cooled (ZFC) magnetization curve shows a decreasing trend with increasing Ni-concentration in cobalt ferrite nanoparticles. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provides a useful biodosimetry protocol for radiation accidents that involve high doses of heavy particle radiation. Human peripheral blood lymphocytes (PBLs) were irradiated in vitro with high doses (5–50 Gy) of charged heavy-ion particles (carbon ions, at an effective linear-energy-transfer (LET) of 34.6 keV/ m), and were then stimulated to obtain dividing cells. PBLs were treated with 100nMcalyculin A to force chromosomes to condense prematurely, and chromosome spreads were obtained and stained with Giemsa. The G2 prematurely condensed chromosome (G2-PCC) index and the number of G2-PCC including fragments (G2-PCC-Fs) per cell for each radiation dose point were scored. Dose-effect relationships were obtained by plotting the G2-PCC indices or G2-PCC-Fs numbers against radiation doses. The G2-PCC index was greater than 5% up to doses of 15 Gy; even after a 30Gy radiation dose, the index was 1 to 2%. At doses higher than 30 Gy, however, the G2-PCC indices were close to zero. The number of G2-PCC-Fs increased steeply for radiation doses up to 30 Gy at a rate of 1.07 Gy−1. At doses higher than 30 Gy, the numbers of G2-PCC-Fs could not be accurately indexed because of the limited numbers of cells for analysis. Therefore, the number of G2-PCC-Fs could be used to estimate radiation doses up to 30 Gy. In addition, a G2-PCC index close to zero could be used as an indicator for radiation doses greater than 40 Gy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beam must be extracted into the air through the vacuum window to irradiate the living cell. In the window design, the material and thickness must be chosen to compromise the beam spot size broadening and the window safety. The structure-static analysis on the window of different structures and materials is done with the finite element analysis method, and the deformation and the equivalent stress axe simulated. The safety of these candidates is investigated using the intensity theory. In addition, the small angle scattering and the transverse range of ions are simulated using SRIM code, including all the effects on the beam spot size broadening, such as the incident ion energy, the material and the thickness of the window and the air composing. At last, the appropriate vacuum windows are presented, including the structure, material and thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An advanced superconducting ECR ion source named SECRAL has been constructed at Institute of Modern Physics of Chinese Academy of Sciences, whose superconducting magnet assembly consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamp. In order to investigate the structure of sextupole coils and to increase the structural reliabilities of the magnet system, global and local structural analysis have been performed in various operation scenarios. Winding pack and support structure design of magnet system, mechanical calculation and stress analysis are given in this paper. From the analysis results, it has been found that the magnet system is safe in the referential operation scenarios and the configuration of the magnet complies with design requirements of the SECRAL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gamma rays following the beta(+)/EC decay of Ir-176,Ir-178 nuclei have been investigated using in-beam gamma-ray experiment. In addition, with the aid of a helium-jet recoil fast tape transport system, the beta(+)/EC decay of Ir-176 was further studied, the new gamma rays were proved and a low-spin isomer was proposed in Ir-176. The isomeric state was analysized according to the systematics in neighboring nuclei.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charged-particle spectra associated with direct photon (gamma(dir)) and pi(0) are measured in p + p and Au + Au collisions at center-of-mass energy root(S)(NN) = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between gamma(dir) and pi(0). Assuming no associated charged particles in the gamma(dir) direction ( near side) and small contribution from fragmentation photons (gamma(frag)), the associated charged-particle yields opposite to gamma(dir) (away side) are extracted. In central Au + Au collisions, the charged-particle yields at midrapidity (vertical bar eta vertical bar < 1) and high transverse momentum (3 < (assoc)(PT) < 16 GeV/c) associated with gamma(dir) and pi(0) (vertical bar eta vertical bar < 0.9, 8 < (trig)(PT) < 16 GeV/c) are suppressed by a factor of 3-5 compared with p + p collisions. The observed suppression of the associated charged particles is similar for gamma(dir) and pi(0) and independent of the gamma(dir) energy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyurea microcapsules about 2.5 mum in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For heat energy storage application, polyurea. microcapsules containing phase change material, n-eicosane, were synthesized by using interfacial polymerization method with toluene- 2,4-diisocyanate (TDI) and diethylenetriamine (DETA) as monomers in an emulsion system. Poly(ethylene glycol)octyl-phenyl ether (OP), a nonionic surfactant, was the emulsifier for the system. The experimental result indicates that TDI was reacted with DETA in a mass ratio of 3 to 1. FT-IR spectra confirm the formation of wall material, polyurea, from the two monomers, TDI and DETA. Encapsulation efficiency of n-eicosane is about 75%. Microcapsule of n-eicosane melts at a temperature close to that of n-eicosane, while its stored heat energy varies with core material n-eicosane when wall material fixed. Thermo-gravimetric analysis shows that core material n-eicosane, micro-n-eicosane and wall material polyurea can withstand temperatures up to 130, 170 and 250 degreesC, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C-p,C-m (J K-1 mol(-1)) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K less than or equal to T less than or equal to 333.297 K, C-p,C-m = 144.27 + 77.046X + 3.5171X(2) + 10.925X(3) + 11.224X(4), where X = (T - 206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K less than or equal to T less than or equal to 378.785 K, C-p,C-m = 325.79 + 8.9696X - 1.6073X(2) - 1.5145 X-3, where X = (T - 366.095)/12.690. A fusion transition at T = 348.02 K was found from the C-p-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol(-1) and 76.58 J mol(-1) K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H-T - H-298.15) and (S-T - S-298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3 +/- 1.4 kJ mol(-1). (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural properties for various SiCO isomers in the singlet and triplet states have been investigated using CASSCF methods with a 6-311 +G* basis set and also using three DFT and MP2 with same basis set for those systems except for the linear singlet state. The detailed bonding character is discussed, and the state-state correlations and the isomerization mechanism are also determined. Results indicate that there are four different isomers for each spin state, and for all isomers, the triplet state is more stable than the corresponding singlet state. The most stable is the linear SiCO ((3)Sigma(-)) species and may be refer-red to the ground state. At the CASSCF-MP2(full)/6-311+G* level, the state-state energy separations of the other triplet states relative to the ground state are 43.2 (cyclic), 45.2 (linear SiOC), and 75.6 kcal/mol (linear CSiO), respectively, whereas the triplet-singlet state excitation energies for each configuration are 17.3 (linear SiCO), 2.2 (cyclic SiCO), 10.2 (linear SiOC), and 18.5 kcal/mol (linear CSiO), respectively. SiCo ((3)Sigma(-)) may be classified as silene (carbonylsilene), and its COdelta- moiety possesses CO- property. The dissociation energy of the ground state is 42.5 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and falls within a range of 36.5-41.5 kcal/mol at DFT level, and of 23.7-28.9 kcal/mol at the wave function-correlated level, whereas the vertical IP is 188.8 kcal/mol at the CASSCF-MP2(full)/6-311+G* level and is very close to the first IP of Si atom. Three linear isomers (SiCO, SiOC, and CSiO) have similar structural bonding character. SiOC may be referred to the iso-carbonyl Si instead of the aether compound, whereas the CSiO isomer may be considered as the combination of C (the analogue of Si) with SiO (the analogue of CO). The bonding is weak for all linear species, and the corresponding potential energy surfaces are flat, and thus these linear molecules are facile. Another important isomer is of cyclic structure, it may be considered as the combination of CO with Si by the side pi bond. This structure has the smallest triplet state-singlet state excitation energy (similar to2.2 kcal/mol); the C-O bonds are longer, and the corresponding vibrational frequencies are significantly smaller than those of the other linear species. This cyclic species is not classified as an epoxy compound. State-state correlation analysis and the isomerization pathway searches have indicated that there are no direct correlations among three linear structures for each spin state, but they may interchange by experiencing two transition states and one cyclic intermediate. The easiest pathway is to break the Si-O bond to go to the linear SiCO, but its inverse process is very difficult. The most difficult process is to break the C-O bond and to go to the linear CSiO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chinese Academy of Sciences [KZCX2-YW-315, KZCX2-YW-Q1-01]; National Natural Science Foundation of China [40625002, 90502009, 200905006]; Office of Science (BER), U. S. Department of Energy ; EU/FP7 [212250]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) coatings were prepared under different conditions by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies, cyclic oxidation behavior of these coatings were studied. Elemental analysis indicates that the coating composition has partially deviated from the stoichiometry of the ingot, and the existence of excess La2O3 is also observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligand-to-metal charge transfer energies of YBO3:Eu have been investigated from the chemical bond viewpoint. The chemical bond parameters, such as the covalency, the polarizability of the chemical bond volume, and the presented charge of the ligands in the chemical bond have been quantitatively determined based on the dielectric theory of complex crystal. We calculated the environmental factor (h(e)), which is the major factor influencing the charge transfer energy in the compounds. The calculated results show that the suitable group space of YBO3 is C2/c. The method provides us with a supplementary tool to judge the proper structure when the structure of the crystal has many uncertain space groups.