175 resultados para EFFECTIVE-MASS
Resumo:
4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.
Resumo:
The Hamiltonian of the zinc-blende quantum rods in the framework of eight-band effective-mass approximation in the presence of external homogeneous magnetic field is given. The electronic structure, optical properties and electron g factors of GaAs quantum rods are investigated. We found that the electron g factors are very sensitively dependent on the dimensions of the quantum rods. As some of the three dimensions increase, the electron g factors decrease. The more the dimensions increase, the more the electron g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the electron g factors more than the other dimension. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Stark effect on excitons in a bilayer system is investigated theoretically within the framework of the effective-mass approximation. The calculations indicate that the energy of the excitons decreases as the value of the in-plane electric field F increases at a fixed value of the distance d between the layers. However, the energy of the excitons increases with d at a fixed value of F. In particular, it increases linearly at small values of d but increases as 1/d at large values. Therefore, it can be concluded that excitons in a bilayer system have a small binding energy equal to the absolute value of the excitonic energy at large d or small F. In addition, the radiative lifetime of heavy-hole excitons in this system is calculated and is found to be short at small values of both F and d. The radiative lifetime of heavy-hole excitons in a bilayer system can be increased by two orders by an in-plane electric field of 2 kV/cm when d is twice the excitonic Rydberg. (c) 2006 American Institute of Physics.
Resumo:
The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15(n), respectively, for n-dimensional nano-structures (n = 1,2,3). Our proposals can be widely applied in the design of various nano-structure devices.
Resumo:
The Hamiltonian in the framework of eight-band effective-mass approximation of the zinc-blende nanowires and nanorods in the presence of external homogeneous magnetic field is given in the cylindrical coordinate. The electronic structure, optical properties, magnetic energy levels, and g factors of the nanowires and nanorods are calculated. It is found that the electron states consist of many hole-state components, due to the coupling of the conduction band and valence band. For the normal bands which are monotone functions of |k(z)|, long nanorods can be modeled by the nanowires, the energy levels of the nanorods approximately equal the values of the energy band E(k(z)) of the nanowires with the same radius at a special k(z), where k(z) is the wave vector in the wire direction. Due to the coupling of the states, some of the hole energy bands of the nanowires have their highest points at k(z)=0. Especially, the highest hole state of the InSb nanowires is not at the k(z)=0 point. It is an indirect band gap. For these abnormal bands, nanorods can not be modeled by the nanowires. The energy levels of the nanorods show an interesting plait-like pattern. The linear polarization factor is zero, when the aspect ratio L/2R is smaller than 1, and increases as the length increases. The g(z) and g(x) factors as functions of the k(z), radius R and length L are calculated for the wires and rods, respectively. For the wires, the g(z) of the electron ground state increases, and the g(z) of the hole ground state decreases first, then increases with the k(z) increasing. For the rods, the g(z) and g(x) of the electron ground state decrease as the R or the L increases. The g(x) of the hole ground state decreases, the g(z) of the hole ground state increases with the L increasing. The variation of the g(z) of the wires with the k(z) is in agreement with the variation of the g(z) of the rods with the L.
Resumo:
We have studied the exciton states of vertically stacked self-assembled quantum disks within the effective mass approximation. The ground energies of a heavy-hole and a light-hole excitons as functions of the vertical disk separation are presented and discussed. The transition energy of a heavy-hole ground-state exciton is calculated and compared with the experimental data. The binding energies are discussed in terms of the probability of ground wave function. The ground energies of a heavy-hole and a light-hole excitons as functions of the applied axial magnetic field are calculated and the effect of disk size (radius of disks) on exciton energies is discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.
Resumo:
The electronic structure and electron g factors of HgTe quantum dots are investigated, in the framework of the eight-band effective-mass approximation. It is found that the electron states of quantum spheres have aspheric properties due to the interaction between the conduction band and valence band. The highest hole states are S (l = 0) states, when the radius is smaller than 9.4 nm. the same as the lowest electron states. Thus strong luminescence from H-Te quantum dots with radius smaller than 9.4 nm has been observed (Rogach et al 2001 Phys. Statits Solidi b 224 153). The bandgap of H-Te quantum spheres is calculated and compared with earlier experimental results (Harrison et al 2000 Pure Appl. Chem. 72 295). Due to the quantum confinement effect, the bandgap of the small HgTe quantum spheres is positive. The electron g factors of HgTe quantum spheres decrease with increasing radius and are nearly 2 when the radius is very small. The electron g factors of HgTe quantum ellipsoids are also investigated. We found that as some of the three dimensions increase, the electron g factors decrease. The more the dimensions increase, the more the g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension.
Resumo:
The eight-band effective-mass Hamiltonian of the free-standing narrow-gap InAs quantum ellipsoids is developed, and the electron and hole electronic structures as well as optical properties are calculated by using the model. The energies, wave functions and transition probabilities of quantum spheres as functions of the radius of quantum sphere R is presented. It is found that the energy levels do not vary as 1/R-2, which is caused by the coupling between the conduction and valence bands, and by the constant terms correspond to the spin-orbit splitting energy. The blueshifts of hole states depend strongly on the coupling from electron states, so that the order of hole states changes as has been predicted in experiment. The exciton binding energies are calculated, the calculated excitonic gaps as functions of the ground exciton transition energy are in good agreement with the photoluminescence measured spectra in details. Finally, the hole energy levels and the linear polarization factors in InAs quantum ellipsoids as functions of the aspect ratio are presented. The state 1S(Z up arrow)((1/2)) becomes the hole ground state when e is larger than 2.4. The saturation value of the linear polarization factors of the InAs long ellipsoids of diameter 2.0 nm is 0.86, in agreement with the experimental results.
Resumo:
The electronic structure and optical properties of freestanding GaN wurtzite quantum wires are studied in the framework of six-band effective-mass envelope function theory. It is found that the electron states are either twofold or fourfold degenerate. There is a dark exciton effect when the radius R of GaN wurtzite quantum wires is in the range of [0.7, 10.9] nm. The linear polarization factors are calculated in three cases, the quantum confinement effect (finite long wire), the dielectric effect and both effects (infinitely long wire). It is found that the linear polarization factor of a finite long wire whose length is much less than the electromagnetic wavelength decreases as R increases, is very close to unity (0.979) at R = I nm, and changes from a positive value to a negative value around R = 4.1 nm. The linear polarization factor of the dielectric effect is 0.934, independent of radius, as long as the radius remains much less than the electromagnetic wavelength. The result for the two effects shows that the quantum confinement effect gives a correction to the dielectric effect result. It is found that the linear polarization factor of very long (treated approximately as infinitely long) quantum wires is in the range of [0.8, 1]. The linear polarization factors of the quantum confinement effect of CdSe wurtzite quantum wires are calculated for comparison. In the CdSe case, the linear polarization factor of R = I nm is 0.857, in agreement with the experimental results (Hu et al 2001 Science 292 2060). This value is much smaller than unity, unlike 0.979 in the GaN case, mainly due to the big spin-orbit splitting energy Delta(so) of CdSe material with wurtzite structure.
Resumo:
Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.
Resumo:
The band structures of wurtzite ZnO are calculated using the empirical pseudopotential method (EPM). The 8 parameters of the Zn and O atom pesudopotential form factors with Schluter's formula are obtained. The effective mass parameters are extracted by using k.p Hamiltonian to fit the EPM results. The calculated band edge energies (E-g, E-A, E-B, and E-C) at Gamma point are in good agreement with experimental results. The ordering of ZnO at the top of valence band is found to be A(Gamma(7))-B(Gamma(9))-C(Gamma(7)) due to a negative spin-orbit (SO) splitting. Based on the band parameters obtained, the valence hole subbands of wurzite ZnO/MgxZn1-xO tensile-strained quantum wells (QWs) with different well widths and Mg compositions are calculated using 6-band k.p method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The origin of spurious solutions in the eight-band envelope function model is examined and it is shown that spurious solutions arise from the additional spurious degeneracies caused by the unphysical bowing of the conduction bands calculated within the eight-band k center dot p model. We propose two approaches to eliminate these spurious solutions. Using the first approach, the wave vector cutoff method, we demonstrate the origin and elimination of spurious solutions in a transparent way without modifying the original Hamiltonian. Through the second approach, we introduce some freedom in modifying the Hamiltonian. The comparison between the results from the various modified Hamiltonians suggests that the wave vector cutoff method can give accurate enough description to the final results.
Resumo:
The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.
Resumo:
In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.