304 resultados para Droplet etching
Resumo:
Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.
Resumo:
Polydimethylsiloxane ( PDMS) has become the most widely used silicon-based organic polymer in bio-MEMS/NEMS devices. However, the inherent hydrophobic nature of PDMS hinders its wide applications in bio-MEMS/NEMS for efficient transport of liquids. Electrowetting is a useful tool to reduce the apparent contact angle of partially wetting conductive liquids and has been utilized widely in bio-MEMS/NEMS. Our experimental results show that the thin PDMS membranes exhibit good properties in electrowetting-on-dielectric. The electrical instability phenomenon of droplets was observed in our experiment. The sessile droplet lying on the PDMS membrane will lose its stability with the touch of the wire electrode to make the apparent contact angle change suddenly larger than 35 degrees. Contact mode can protect the dielectric layer from electrical breakdown effectively. Electrical breakdown process of dielectric layer was recorded by a high speed camera. It is found experimentally that a PDMS membrane of 4.8 mu m thick will not be destroyed due to the electric breakdown even at 800 V in the contact mode.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Porous Zr-based bulk metallic glass (PMG) with unidirectional opening pores is prepared by electrochemical etching of tungsten wires of the W/bulk metallic glass (BMG) composites. The porosity and pore size can be controlled by adjusting the tungsten wires. The PMG showed no measurable loss in thermal stability as compared to the monolithic Zr-based BMG by water quenching and is more ductile and softer than the pore-free counterpart. The specific surface area of the PMGs is calculated to be 0.65, 3.96, and 10.54 m(2)/kg for 20, 60, and 80 vol % porosity, respectively. (c) 2007 The Electrochemical Society.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
分别采用激光全息摄影技术和高速数字摄影技术观察了柴油、甲醇和水乳化液喷雾在高温高压(773K,3.1MPa)环境中发生微爆现象的瞬间和全过程,证实了微爆现象的存在.由于微爆机理的复杂性,尚难以用数学方法准确描述该过程.实验分析表明:若环境温度处于"最佳温度"范围内,乳化液滴表面首先形成"无水层",液滴内部形成一个水滴的概率很小,可能形成几个相对较大的水滴,只要其中一个较大水滴的蒸汽压力大于液滴的表面张力和环境压力之和,液滴就有可能发生微爆,微爆不仅与液滴直径、组分的质量分数和组分间的沸点差等乳化液的本身特性有关,而且环境温度和压力的影响也不容忽视.该研究可以为乳化液喷雾微爆过程的数学模拟提供参考.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf, which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor, so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
Electrowetting on dielectrics has been widely used to manipulate and control microliter or nanoliter liquids in micro-total-analysis systems and laboratory on a chip. We carried out experiments on electrowetting on a lotus leaf which is quite different from the equipotential plate used in conventional electrowetting. This has not been reported in the past. The lotus leaf is superhydrophobic and a weak conductor so the droplet can be easily actuated on it through electrical potential gradient. The capillary motion of the droplet was recorded by a high-speed camera. The droplet moved toward the counterelectrode to fulfill the actuation. The actuation speed could be of the order of 10 mm/s. The actuation time is of the order of 10 ms.
Resumo:
液滴是自然界中普遍存在的一种物质形态。非连续微流体(液滴)是近年来微流体技术重要发展方向之一。对液滴的产生、启动、移动、合并、分离和碰撞过程的研究对于航天、微纳系统、电子显示、计算机冷却、喷墨、生物医学等学科领域有着重要的应用价值。液滴属于软物质,其力学性质介于流体和固体之间,其类固体(solid-like)行为来自于曲率产生的Laplace压力和表面张力的约束。对液滴动力学行为的研究有着重要的学术价值。 本文的主要工作是针对生物微电子机械系统(Bio-MEMS)以及柔性微纳电子加工中常用的材料聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)为基底的液滴动力学实验研究。 液滴是一个理想的微反应器,许多实验可以集成在一个液滴或多个液滴内完成。液滴本身的动力学特性对于实验的完成效率和质量有着重要的影响。液滴的微操控技术包括多相流法、电润湿法、热毛细管法、介电泳法等。液滴的动力学特性受到基底的影响非常大,包括基频、振动模态、运动过程等均随基底的润湿性、弹性模量的变化而有所变化。 在Bio-MEMS以及柔性微纳电子加工当中,PDMS扮演着越来越重要的角色,尤其是PDMS的润湿性和电润湿特性。目前的PDMS在Bio-MEMS当中主要是用于制备各种微流道。常见的问题主要是一方面PDMS是疏水材料,影响流体的输运。另一方面是液体在这种低Reynolds数情况下不易混合,反应效率低。本文提出了在PDMS表面溅射纳米厚度的金来减小PDMS表观接触角的方法。这种方式在特定喷金量的情况下可以在PDMS表面产生多层次的压应力波纹。这种压应力波纹对于柔性微纳电子加工,以及微流道中加速流体混合有着非常重要的作用。 电润湿是另一种可以使PDMS亲水化的方法。实验证明,PDMS具有较好的电润湿性质。此外电润湿也是目前操纵液滴的主要方式。目前一个常见的问题是电击穿现象阻碍了驱动电压的低压化,且低Reynolds数情况下液滴的混合效率偏低。此外电极还会由于少量电解的发生导致腐蚀及对液体样品的污染。本文提出了接触式的电润湿,在电极逐渐触碰液滴的过程中,液滴发生百Hz的失稳振动,稳定后接触角减小。这种电润湿模式可以有效的提高临界击穿电压,避免液滴被腐蚀后的电极污染,同时可以加快液滴的混合效率。其失稳特征时间在10 ms量级,这恰是所用液滴特征尺度在1 mm左右的电润湿器件的最快响应时间。并采用液滴振动的理论估算了液滴的失稳时间,同时还考虑了基底润湿性对液滴振动过程的影响。 液滴的启动是电润湿操控液滴过程中的重要环节。通常的液滴启动都是在非连续基底上依靠逻辑电路产生的电势变化来驱动液滴。无论是逻辑电路的设计还是驱动装置的加工都非常复杂。本文首次实现了在超疏水生物样品荷叶上的液滴启动,启动速度为数十毫米/秒,启动时间为10 ms量级。并利用PDMS成功的仿制了荷叶结构实现了超疏水的PDMS表面,荷叶同仿荷叶的PDMS超疏水表面具有相近的润湿性。 在数字微流体操控液滴的过程中,液滴的合并涉及液滴的碰撞,而且MEMS系统当中利用液滴撞击进行冷却的实验已经有所开展。同时理解液滴碰撞还对许多领域包括生物、化学、喷墨、大气物理等有着非常重要的作用。本文实验研究了Weber数和毛细数对液滴碰撞过程的影响,通过改变Weber数和毛细数得到了四种不同的响应模式。
Resumo:
The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.
Resumo:
The investigation of the effect of micro impurity on crystal growth by optical microscopy has been validated. The results showed that the growth rate of a lysozyme crystal was affected even if the concentration of impurity of fluorescent-labeled lysozyme (abbreviation, F-lysozyme) was very small. Different concentrations of F-lysozyme had different effects on crystal growth rate. The growth rate decreased much more as F-lysozyme concentration increased. The density of incorporated F-lysozyme on different grown layers of a lysozyme crystal during crystal growth was obtained from the results of flat-bottomed etch pits density. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
For efficiently cooling electronic components with high heat flux, experiments were conducted to study the flow boiling heat transfer performance of FC-72 over square silicon chips with the dimensions of 10 × 10 × 0.5 mm3. Four kinds of micro-pin-fins with the dimensions of 30 × 60, 30 × 120, 50 × 60, 50 × 120 μm2 (thickness, t × height, h) were fabricated on the chip surfaces by the dry etching technique for enhancing boiling heat transfer. A smooth surface was also tested for comparison. The experiments were made at three different fluid velocities (0.5, 1 and 2 m/s) and three different liquid subcoolings (15, 25 and 35 K). The results were compared with the previous published data of pool boiling. All micro-pin-fined surfaces show a considerable heat transfer enhancement compared with a smooth surface. Flow boiling can remarkably decrease wall superheat compared with pool boiling. At the velocities lower than 1 m/s, the micro-pin-finned surfaces show a sharp increase in heat flux with increasing wall superheat. For all surfaces, the maximum allowable heat flux, qmax, for the normal operation of LSI chips increases with fluid velocity and subcooling. For all micro-pin-finned surfaces, the wall temperature at the critical heat flux (CHF) is less than the upper limit for the reliable operation of LSI chips, 85◦C. The largest value of qmax can reach nearly 148 W/cm2 for micro-pin-finned chips with the fin height of 120 μm at the fluid velocity of 2 m/s and the liquid subcooling of 35 K. The perspectives for the boiling heat transfer experiment of the prospective micro-pin-finned sur- faces, which has been planned to be made in the Drop Tower Beijing/NMLC in the future, are also presented.
Resumo:
报道了一种新型实用的用单根光纤布拉格光栅(FBG)实现温度和应变分离传感的技术。当光纤光栅一部分包层直径变小时,整个光栅可以看成由两个周期相同但直径不同的子光栅连接而成。理沦分析和实验都证实了这两个子光栅具有相同的温度敏感性和不同的应变敏感性.由此实现光纤光栅传感器中温度和应变两参数的分离测量,而且这两个子光栅的中心波长间距可以直接测量应变大小.温度变化不影响所测量的应变值。实验中光栅的一部分包层直径被HF酸腐蚀到82μm.获得了两子光栅应变响应系数分别为0.00201nm/με.0.000858nm/μ
Resumo:
The numerical solutions of binary-phase (0, tau) gratings for one-dimensional array illuminators up to 32 are presented. Some fabrication errors, which are due to position-quantization errors, phase errors, dilation (or erosion) errors, and the side-slope error, are calculated and show that even-number array illuminators are superior to odd-number array illuminators when these fabrication errors are considered. One (0, tau) binary-phase, 8 x 16 array illuminator made with the wet-chemical-etching method is given in this paper.