98 resultados para Donor and acceptor conjugated blocks
Resumo:
A series of coil-rod-coil triblock copolymers (i.e., F3T8EO8, F3T8EO17, F3T8EO45, and F3T8EO125) with a mesogenic monodisperse conjugated oligomer comprising 3 fluorene, 8 thiophene, and 2 phenyl units as the rod and poly(ethylene oxide) (PEO) as the coil were synthesized. A reference compound, that is F3T8ME2, with the identical rod but without PEO was also prepared for comparison. The volume fraction of PEO (f(PEO)) was 0, 0.16, 0.28, 0.50, and 0.73 for F3T8ME2, F3T8EO8, F3T8EO17, F3T8EO45, and F3T8EO125, respectively. It was found that the introduction of PEO into the triblock copolymers encouraged the formation of H-type aggregation and f(PEO)-dependent highly ordered mesophases while f(PEO) < 0.73. For F3T8ME2, only nematic mesophase was observed. In contrast, F3T8EO8 and F3T8EO17, with f(PEO) of 0.16 and 0.28, respectively, are smectic A (SA) mesomorphism.
Resumo:
Here, a fluorescent switch is constructed combining hemin, hemin aptamer, and a newly synthesized anionic conjugated polymer (ACP), poly(9,9-bis(6'-phosphate-hexyl) fluorenealt-1,4-phenylene) sodium salt (PFHPNa/PFP). In the "off-state", the fluorescence of PFP is sensitively quenched by hemin, with a high K-sv value of similar to 10(7). While in the "on-state", the formation of the aptamer/hemin complex recovers the fluorescence intensity. The fluorescent switch is sensitive and selective to hemin. To testify the universality and practicality of the fluorescent switch, a series of label-free DNA-related sensing platforms are developed, containing three DNA sensing strategies and one ATP recognition strategy. The fluorescent switch developed is simple, sensitive, and universal, which extends applications of the anionic conjugated polymers.
Resumo:
Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.
Resumo:
We employed a binary spacer of orderly conjugated 3,4-ethyldioxythiophene and thienothiophene to construct a wide-spectral response organic chromophore for dye-sensitized solar cells, exhibiting a high power conversion efficiency of 9.8% measured under irradiation of 100 mW cm(-2) air mass 1.5 global (AM1.5G) sunlight and an excellent stability.
Resumo:
We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.
Resumo:
A folate-conjugated copolymer PEG-PLA-PLL/folate was synthesized and mixed with pure PEG-PLA-PLL and a fluorescent model drug mFITC to prepare folate-conjugated micelles. The distribution of micelles was studied on cancer-cell-bearing mice via frozen slicing. The results show that mFITC is successfully encapsulated into folate(+) and folate(-)micelles; PEG-PLA-PLL micelles the latter can be internalized by both HeLa and CHO cells without selectivity due to their cationic surface charges, while folate(+)micelles exhibit more preferential endocytosis by HeLa cells than by CHO cells. The folate(-)micelles showed retention in both organs and tumors. The folate(+)micelles are a promising active targeting drug delivery system for FR over-expressing cells and they accumulate in tumor beds.
Resumo:
Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.
Resumo:
We fabricated organic photovoltaic cells by using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material and para-sexiphenyl (p-6P) as electron donor material. F16CuPc has wide absorption spectrum from 550 nm to 850 nm, which covers the maximum of solar photo flux. The measurement of their external quantum efficiency (EQE) demonstrated that the photocurrent comes from the excitons created in F16CuPc, which were separated into free electrons and holes at heterojunction interface of p-6P and F16CuPc. Moreover, F(16)FuPc with excellent air-stability improved the environmental stability of photovoltaic cells, and the unencapsulated cells exhibited the shelf lifetime of exceeding a week.
Resumo:
Five zinc (II) complexes (1-5) with 4 '-phenyl-2,2 ':6 ',2 ''-terpyridine (ptpy) derivatives as ligands have been synthesized and fully characterized. The para-position of phenyl in ptpy is substituted by the group (R), i.e. tert-butyl (t-Bu), hexyloxy (OHex), carbazole-9-yl (Cz), naphthalen-1-yl-phenyl-amine-N-yl (NPA) and diphenyl amine-N-yl (DPA), with different electron-donating ability. With increasing donor ability of the R, the emission color of the complexes in film was modulated from violet (392 nm) to reddish orange (604 nm). The photoexcited luminescence exhibits significant solvatochromism because the emission of the complexes involves the intra-ligand charge transfer (ILCT) excited state. The electrochemical investigations show that the complexes with stronger electro-donating substituent have lower oxidation potential and then higher HOMO level. The electroluminescence (EL) properties of these zinc (II) complexes were studied with the device structure of ITO/PEDOT/Zn (II) complex: PBD:PMMA/BCP/AlQ/ LiF/Al. Complexes 3, 4 and 5 exhibit EL wavelength at 552, 600 and 609 nm with maximum current efficiency of 5.28, 2.83 and 2.00 cd/A, respectively.
Resumo:
The synthesis and crystal structure of the first mixed-metal organometallic polymer network containing phenylthiolato ligands, [K2Fe(SPh)(4)](n), are investigated. The simple phenyl-thiolate acts as a sigma- and pi-donor ligand to give a 3-D potassium iron coordination polymer with both metal-carbon and metal-sulfur coordination interactions.
Resumo:
Three novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H2O)(1.5)](2)Mo6O19.CH3CN, 1, and [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)]XMo12O40.6DMF.CH3CN (X = P, 2, and As, 3; DB18C6 = dibenzo-18-crown-6; DMF = N,N-dimethylfomamide), have been synthesized and characterized by elemental analyses, IR, UV-vis, EPR, TG, and single crystal X-ray diffraction. Compound 1 crystallizes in the tetragonal space group P4/mbm with a = 16.9701(6) Angstrom, c = 14.2676(4) Angstrom, and Z = 2. Compound 2 crystallizes in the hexagonal space group P6(3)/m with a = 15,7435(17) Angstrom, c = 30.042(7) Angstrom, gamma = 120degrees, and Z = 2. Compound 3 crystallizes in the hexagonal space group P6(3)/m with a = 15.6882(5) Angstrom, c = 29.9778(18) Angstrom, gamma = 120degrees, and Z = 2. Compound 1 exhibits an unusual three-dimensional network with one-dimensional sandglasslike channels based on the extensive weak forces between the oxygen atoms on the [Mo6O19](2-) polyoxoanions and the CH2 groups of crown ether molecules, Compounds 2 and 3 are isostructural, and both contain a novel semiopen cagelike trimeric cation [{Na(DB18C6)(H2O)(2)}(3)(H2O)(2)](3+). In their packing arrangement, an interesting 2-D "honeycomblike" "host" network is formed, in which the [XMo12O40](3-) (X = As and P) polyoxoanion "guests" resided.
Resumo:
A novel bipolar conjugated polymer containing triphenylamine and 1, 3, 4-oxadiazole units was synthesized by Suzuki reaction. Its structure and properties were characterized by NMR, IR, UV-Vis, PL spectroscopy and electrochemical measurement. The photo luminescent spectroscopy and cyclic voltammograms measurement demonstrated that the resulting polymer shows blue emission (477 nm) and possesses both electron and hole-transporting property.
Resumo:
Two series of highly soluble novel nitrogen- and sulfur-containing conjugated polymers were synthesized via an acid-induced self-polycondensation of functional monomers with methyl sulfinyl and aromatic groups. The well-defined structures of synthesized polymers were confirmed by their NMR and IR spectra. The highest occupied molecular orbital energy values for these materials, estimated by cyclic voltammetry, showed a broad range of values from about 5.0 to 5.2 eV used as hole-transport layers (HTL) in two-layer light-emitting diodes ITO/HTL/Alq(3)/Mg:Ag [ITO = indium tin oxide, and Alq(3) = tris(8-quinolinato) aluminum]. The typical turn-on voltage of these diodes was about 4-5 V. The maximum brightness of the device was about 3440 cd/m(2) at 20 V. The maximum efficiency was estimated to be 0.15 1m/W at 10 V.