96 resultados para Deposition of subglacial till
Resumo:
The ZnO/TiO2 core/shell structure was formed through deposition of a TiO2 coating layer on the hydrothermally fabricated ZnO nanorod arrays through radio frequency magnetron sputtering. The effects of the TiO2 shell's characteristics on the current-voltage behaviors of the core/shell-based dye-sensitized solar cells (CS-DSSC) were investigated. As the rates of injection, transfer, and recombination of electrons of such CS-DSSC were affected significantly by the crystallization, morphology, and continuity of the TiO2 shells, the photovoltaic efficiency was accordingly varied remarkably. In addition, the efficiency was further improved by enhancing the surface area in the core/shell electrode.
Resumo:
The hydroxyapatite (HA) nanocrystals of 100-200 nm in length and 20-30 nm in width were hydrothermally synthesized by the reaction of phosphoric acid and calcium hydroxide. Lactic acid oligomer surface grafted HA(op-HA) nanoparticles were obtained by oligomeric lactic acid with a certain molecular weight grafting onto the HA surface to form a Ca carboxylate bond in the absence of any catalyst. The op-HA was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposite of op-HA/PLGA. FTIR, TGA, ESEM and EDX were used to analyze grafting reaction, the graft ratio of op-HA, surface topography and calcium deposition of the composites, respectively. The rabbit osteoblasts were seeded and cultured on the surface of composites in vitro. The cell morphology, adhesion, proliferation and gene expression were evaluated with FITC staining, NIH image J software and the analysis of real-time PCR, respectively. The results show that the graft ratio of op-HA is 8.3% (mass fraction). The op-HA/PLGA nanocomposite possessed more suitable surface properties, including roughness and plenty of calcium and phosphor. It exhibited better cell adhesion, spreading and proliferation of rabbit osteoblasts, compared to pure PLGA.
Resumo:
Luminescence functionalization of the ordered mesoporous SBA-15 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process, resulting in the formation of the YVO4:Eu3+@SBA-15 composite material. This material, which combines the mesoporous structure of SBA-15 and the strong red luminescence property of YVO4:Eu3+, can be used as a novel functional drug delivery system. The structure, morphology, porosity, and optical properties of the materials were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N-2 adsorption, and photoluminescence spectra. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the YVO4:Eu3+ layer and the adsorption of ibuprofen (IBU, drug). The IBU-loaded YVO4:Eu3+@SBA-15 system still shows the red emission of Eu3+ (617 nm, D-5(0)-F-7(2)) under UV irradiation and the controlled drug release property. Additionally, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU in the system, making the extent of drug release easily identifiable, trackable, and monitorable by the change of luminescence. The system has great potential in the drug delivery and disease therapy fields.
Resumo:
Polyaniline/multi-walled carbon nanotube/gold (PANI/MWNT/Au) composite film was synthesized via a two-step electrochemical process. First the mixture of aniline and MWNT was heated at refluxing and was electropolymerized. Then, the An nanoparticles were dispersed into the film of PANI/MWNT by electrochemical reduction of HAuCl4. The morphology of sample was analyzed by scanning electron microscopy (SEM). Raman measurement indicates a well electrochemical deposition of PANI on MWNT, and XPS result confirms the formation of Au-0 nanoparticles. Further, cyclic voltammograms show that the film exhibits a good electrochemical activity and electrocatalysis towards ascorbic acid. Based on these investigations, a formation mechanism of the PANI/MWNT composite film was proposed.
Resumo:
A new kind of hybrid self-assembled film was obtained by means of alternating deposition of the polyoxometalate (POM), K-13[Eu(SiW11-O-39)(2)], and polyacrylamide (PAA) on the 3-aminopropylsilanized precursor film. The experimental results showed that the polyanions were successfully incorporated into the self-assembled multilayers of the polyacrylamide. The scanning electron microscopy (SEM) was taken to study the surface morphology of the film. The X-ray photoelectron spectra (XPS) verified that the polyoxometalates were incorporated into the multilayer films with a certain adsorption interaction. The effects of the polyacrylamide on the luminescence of the polyoxometalate were discussed in detail. The luminescence spectra showed that the energy was transferred from the ligands to the Eu3+ ions in the self-assembled films.
Resumo:
Magnetic luminescent nanocomposites were prepared via a layer-by-layer (LbL) assembly approach. The Fe3O4 magnetic nanoparticles of 8.5 nm were used as a template for the deposition of the CdTe quantum dots (QDs)/polyelectrolyte (PE) multilayers. The number of polyelectrolyte multilayers separating the nanoparticle layers and the number of QDs/ polyelectrolyte deposition cycles were varied to obtain two kinds of magnetic luminescent nanocomposites, Fe3O4/PEn/CdTe and Fe3O4/(PE3/CdTe)(n), respectively. The assembly processes were monitored through microelectrophoresis and UV-vis spectra. The topography and the size of the nanocomposites were studied by transmission electron microscopy. The LbL technique for fabricating magnetic luminescent nanocomposites has some advantages to tune their properties. It was found that the selection of a certain number of the inserted polyelectrolyte interlayers and the CdTe QDs loading on the nanocomposites could optimize the photoluminescence properties of the nanocomposites. Furthermore, the nanocomposites could be easily separated and collected in an external magnetic field.
Resumo:
In this paper, we found that boron deposited on the surface of support when sodium borohydride used as reducing agent during the preparation of Pt/C catalyst. The deposition of boron markedly reduces particle size of Pt, raises electrochemical active surface (EAS) area of catalyst and electrochemical activity for hydrogen evolution or oxygen reduction reaction (ORR) compared with which prepared using other reducing agents (hydrogen and formaldehyde).
Resumo:
The partial oxidation of methane with molecular oxygen was performed on Fe-Mo/SiO2 catalysts. Iron was loaded on the Mo/SiO2 catalyst by chemical vapor deposition of Fe-3(CO)(12). The catalyst showed good low-temperature activities at 723-823 K. Formaldehyde was a major condensable liquid product on the prepared catalyst. There were synergistic effects between iron and molybdenum in Fe-Mo/SiO2 catalysts for the production of formaldehyde from the methane partial oxidation. The activation energy of Mo/SiO2 decreased with the addition of iron and approached that of the Fe/SiO2. The concentration of isolated molybdenum species (the peak at 1148 K in TPR experiments) decreased as the ion concentration increased and had a linear relationship with the selectivity of methane to formaldehyde. The role of Fe and Mo in the Fe-Mo/SiO2 catalyst was proposed: Fe is the center for the C-H activation to generate reaction intermediates, and Mo is the one for the transformation of intermediates into formaldehyde. Those phenomena were predominant below 775 K.
Resumo:
Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.
Resumo:
The deposition of Langmuir-Blodgett film of neodymium bisphthalocyanine derivatives is reported for the first time. Optical absorption data reveal that these films call be deposited in a reproducible manner; results are also presented showing the extreme sensitivity and selectivity of their electrical conductivity to NH3 in room temperature. The Nd bisphthalocyanine LB film is a sensitive, reproducible. rapid and stable gas sensor. Neodymium bisphthalocyanine derivatives will be candidates for thin film gas-sensitive materials. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
An electrolysis technique for co-deposition of Ca2+ and Na+ at the liquid lead cathode was put forward. The experiment was carried out at an electrolysis temperature below 650 degrees C and had a current efficiency of 98%, which are respectively 100 similar to 300 degrees C lower and 15% similar to 30% higher than those reported both at home and abroad.
Resumo:
The compound K-1.64[Pt(C2O4)(2)] was electrochemically synthesized on a glassy carbon electrode using both single-potential step and cyclic voltammetry techniques; voltammetric behaviour of the working electrode was changed dramatically with deposition of
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
In this paper, five types of chemically modified electrode (CMEs) prepared with the deposition of platinum particles on various surfaces of glassy carbon (GC) modified with cobalt porphyrin and Nafion(R) solution are characterized using the electron scanning microscope (SEM). Their activities in the four-electron reduction of dioxygen to water on the basis of their electrochemical data from cyclic voltammetric and rotating ring-disk electrode (RRDE) experiments are examined and compared. Platinum particles dispersed on the GC surface adsorbed with the cobalt porphyrin exhibit the highest activity for the electrocatalytic reduction of dioxygen. However it is interesting that the cobalt ion is lost from the center of the porphyrin ring during the preparation of the cobalt porphyrin + Nafion mixture solution, while the porphyrin ring still remains in the Nafion film, as shown by EDX analysis. The incorporation of the porphyrin may change the structure of the Nafion film into a looser form, since the platinum particles dispersed in the film are more readily exposed, resulting in more favourable mass transfer and higher activity for the electrocatalytic reduction of dioxygen.
Resumo:
Analysis of accommodation space variation during deposition of the Cretaceous Qingshankou Formation in the Songliao Basin, NE China, indicates that accommodation space changed both through time and across the basin as a seesaw movement. The mid-upper Qingshankou Formation is divided into three units. In each unit, changes of accommodation space differ in the southern and northern part of the basin. Increasing accommodation in the southern part is accompanied by a decrease in the northern part, and vice versa. Between the northern and southern basin, there was a neutral belt that is like a fulcrum, called the transformation belt here, where the accommodation did not change to any significant degree. We call this response 'accommodation transformation', whose characteristics are defined by tectonic subsidence analysis, palaeontological and sedimentary analyses. The accommodation increasing belt, decreasing belt, transformation belt and accommodation transformation boundary together constitute the accommodation transformation system. The recognition of accommodation transformation in the Songliao Basin provides a new insight into sequence stratigraphy and might be widely applicable.