100 resultados para Covalent anchorage
Resumo:
An empirical method based on chemical bond theory for the estimation of the lattice energy for ionic crystals has been proposed. The lattice energy contributions have been partitioned into bond dependent terms. For an individual bond, the lattice energy contribution made by it has been separated into ionic and covalent parts. Our calculated values of lattice energies agree well with available experimental and theoretical values for diverse ionic crystals. This method, which requires detailed crystallographic information and elaborate computation, might be extended and possibly yield further insights with respect to bond properties of materials.
Resumo:
Triblock copolymer PCL-PEG-PCL was prepared by ring-opening polymerization of epsilon-caprolactone (CL) in the presence of poly(ethylene glycol) catalyzed by calcium ammoniate at 60 degreesC in xylene solution. The copolymer composition and triblock structure were confirmed by H-1 NMR and C-13 WR measurements. The differential scanning calorimetry and wide-angle X-ray diffraction analyses revealed the micro-domain structure in the copolymer. The melting temperature T-c and crystallization temperature T-c of the PEG domain were influenced by the relative length of the PCL blocks. This was caused by the strong covalent interconnection between the two domains. Aqueous micelles were prepared from the triblock copolymer. The critical micelle concentration was determined to be 0.4-1.2 mg/l by fluorescence technique using pyrene as probe, depending on the length of PCL blocks, and lower than that of corresponding PCL-PEG diblock copolymers. The H-1 NMR spectrum of the micelles in D2O demonstrated only the -CH2CH2O- signal and thus confirmed. the PCL-core/PEG-shell structure of the micelles.
Resumo:
Microperoxidase-11 (MP-11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde. The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP-11 was -170 mV. which is significantly more positive than that of MP-11 in a solution or immobilized on the surface of electrodes prepared with other methods. This MP-11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide.
Resumo:
Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.
Resumo:
highly organized phenyl-capped teraniline (PC-teraniline) film at the molecular level was fabricated on carbon surfaces by electrochemical reduction of diazonium salts. Cyclic voltammetry (CV). scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were employed for the characterization of the film.
Resumo:
By using the clinical bond theory of dielectric description, the chemical bond parameters of (Tl.Pb) - 1223 was calculated. The results show that the Sr-O, Tl-O, and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent, character. Mossbauer isomer shifts of Fe-57 and Sn-119 doped in (Tl, Pb) -1223 were calculated by using the chemical environmental factor, h, defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified ill Fe-57, and Sn-119 doped (Tl, Pb) -1223 superconductor. We conclude that all of' the Fe atoms substitute the Cu at square planar Cu (H site, whereas Sn prefers to Substitute the square pyramidal Cu (2) site.
Resumo:
Using an enhanced surface plasmon resonance (SPR) immunosensor, we have determined the concentration of human complement factor 4 (C4). Antibody protein was concentrated into a carboxymethyldextran-modified gold surface by electrostatic attraction force and a simultaneous covalent immobilization of antibody based on amine coupling reaction took place. The sandwich method was applied to enhance the response signal and the specificity of antigen binding assay. The antibody immobilized surface had good response to C4 in the range of 0.02-20 mug/ml by this enhanced immunoassay. The regeneration effect by pH 2 glycine-HC1 buffer was also investigated. The same antibody immobilized surface could be used more than 80 cycles of C4 binding and regeneration. In addition, the ability to determinate C4 directly from serum sample without any purification was investigated. The sensitivity, specificity and reproducibility of the enhanced immunoassay are satisfactory. The results clearly demonstrate the advantages of the enhanced SPR technique for C4 immunoassay.
Resumo:
Recent advances in the gas - phase reaction of aromatics with cationic electrophiles are reviewed. The overall substitution reaction is analyzed in terms of its elementary steps. Mechanistic studies have been focused on the structure and reactivity of covalent and non - covalent ionic intermediates, which display a rich chemistry and provide benchmark reactivity models. Particular attention has been devoted to proton transfer reactions, which may occur intra or intermolecularly in arenium intermediates.
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Conversion of thyroxine (T-4) to 3,5,3'-triiodothyronine is an essential first step in controlling thyroid hormone action. Type I deiodinase (DI) can catalyze the conversion to produce the bulk of serum 3,5,3'-triiodothyronine. Acting as a mimic of DI, a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against T4 into selenocysteines, can catalyze the deiodination of T4 with dithiothreitol (DTT) as cosubstrate. The mimic enzyme Se-4C5 exhibited a much greater deiodinase activity than model compound ebselen and another selenium-containing antibody Se-Hp4 against GSH. The coupling of selenocysteine with the combining pocket of antibody 4C5 endowed Se-4C5 with enzymatic activity. To probe the catalytic mechanism of the catalytic antibody, detailed kinetic studies were carried out in this paper. Investigations into the deiodinative reaction revealed the relationship between the initial velocity and substrate concentration. The characteristic parallel Dalziel plots demonstrated that Se-4C5-catalyzed reaction mechanism was ping-pong one, involving at least one covalent enzyme intermediate. The kinetic properties of the catalytic antibody were similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 muM, respectively, and a V-m value of 270 pmol per mg of protein per min. The activity could be sensitively inhibited by 6-propyl-2-thiouracil (PTU) with a K-i value of similar to 120 muM at 2.0 muM T-4 concentration. The PTU inhibition was progressively alleviated with the increasing concentration of added DTT, revealing that PTU was a competitive inhibitor for DTT.
Resumo:
Matrix-assisted laser desorption ionization (MALDI) mass spectrometry is difficult for the characterization of noncovalent complexes hitherto because of the limitations in acidic matrix, sample preparation, laser-induced polymerization and adduct formation with matrix. Under our experimental conditions, sinapinic acid is used as a matrix, the specific noncovalent interactions of protein with fullerenols were observed by MALDI mass spectrometry. Some mass spectrometric features, such as mass shifts, broad adduct peaks and stoichiometries, showed that the specific non-covalent complexes between protein and fullerenols have been formed at a ratio of 1 : 4 for hemoglobin-fullerenols or 1 : 1 for myoglobin-fullerenols. The results implied that fullereneols could be used to protect partly hemoglobin from decomposition in acidic media, and therefore, it is possible to realize the molecular weight determination of a quaternary protein by MALDI mass spectrometry via the addition of specific organic compound in the matrix.
Resumo:
A novel organic-inorganic composite film was formed by attaching Keegin-type heteropolyanion, SiW12O404- (devoted briefly as SiW12), on a glassy carbon electrode derivatized by 4-aminophenyl group. The composite film has an ionic bonding character between SiW12 and the surface amino group, which greatly improves the Blm stability and exhibits a more reversible electrochemical behavior. The modified electrode offers an excellent and stable electrocatalytic response for the reduction of nitrite. Possible mechanism was provided for the reaction of nitrite with SiW12O404-/aminophenyl composite film.
Resumo:
Covalent radii of the bonding elements have strong effects on the linear electro-optic coefficients of zinc blende crystals; these effects can be quantitatively determined by investigating the relation between the difference in the atomic sizes rho and the magnitude of the linear electro-optic tensor coefficient r(41). It is interesting to note that for the same cation Zn2+, Ga3+, or In3+ the magnitude of r(41) increases with increased covalent radius of the bonded anion r(beta). Especially with the increasing tendency of the parameter rho, the magnitude of r(41) of crystals that have a same cation will increase suddenly when the value of r(beta) becomes larger. (C) 1997 Academic Press.
Resumo:
A theoretical method has been set up to calculate the electrooptic tensor coefficients r(ijk), based on the Phillips-Van Vechten (PV) dielectric theory and the Levine bond charge model, Starting from the crystal structure data and only introducing the experimentally determined optical permittivity and dielectric constant, the electro-optic tensor coefficients r(ijk) can be quantitatively predicted, The theoretical calculations are in good agreement with experiment in the case of zinc blende and wurtzite crystals, For zinc blende crystals, the effects of covalent radii on the linear electro-optic coefficients are discussed. (C) 1997 Academic Press.
Resumo:
The Mossbauer spectrum of a new organoeuropium complex with a neutral pi-ligand, Eu(eta6-C6Me6) (AlCl4)2, is measured at 88 K. The Mossbauer parameters derived from the spectrum show the divalent nature of the europium ion in this organoeuropium complex. The calculations of the electric field gradient at the Eu nucleus in the crystal indicate that the Eu-Cl bond in the compound may possess a certain covalent character. The low Debye temperature of this complex may be attributed to weak and delocalized pi-bonding between the Eu atom and the benzene ring of hexamethylbenzene, and a slow paramagnetic relaxation is suggested by the Mossbauer effect.