78 resultados para Continued formation. Manipulative and informatical abacus.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil and gas exploration of marine strata in China's Pre-Cenozoic residual basins is regarded as a worldwide puzzle because of existent problems and cruxes. Objectively speaking, the subsurface geologic structure is complicated, and the surface conditions of some areas are tough. On the other hand, there are still many problems to be solved in oil and gas exploration technologies of Pre-Cenozoic marine fades, and theoretic cognition about petroleum geology is not profound yet. Therefore, it is principal to explore integrated geophysical research ways of Pre-Cenozoic residual basins. Seismic prospecting and geophysical integrated interpretation technologies aimed at middle Paleozoic marine facies with deeper burial and complicated geologic conditions have not formed due to bad quality of deep strata data. Pre-Cenozoic strata, and especially extension, thickness and internal structure of Paleozoic strata can not be recognized from seismic profiles, so it is hard to systematically cognize structural features and oil-gas resources prospect of Pre-Cenozoic basins. To further investigation of fabric and structural features, basin prototype, formation and evolution pattern of Pre-Cenozoic basins, and also their control over formation, migration and aggregation of oil and gas, will play a guiding and promotive role in developing new surveying areas, selecting advantageous zones and predicting oil-gas resources.This paper follows the modem macrocontrol theory of "Region constrains local, deep strata controls shallow ones", and uses the integrated geophysical method of "One guide, two hinges, three combinations and multi feedbacks'*. Based on several years of geological and geophysical results of the Shengli Oilfield, and 14 newly-joint regional seismic profiles, deep structure and oil-gas bearing capacity of the Jiyang area are discussed and new cognitions are drawn as below.Seismic identification marks Tr, Tg, Tgl and Tg2 are established for importantPre-Cenozoic geological interfaces, and promoted to the whole Jiyang area.Through area-wide tracking and clogging of important seismic reflection marker,the isochronic framework of pre-Tertiary basin is set up in the Jiyang area for the firsttime, which is vital for basin research.Integrated with geological and geophysical research results, the Jiyang area isdivided into four first-order tectonic sequences- basement, lower tectonic layer,upper tectonic layer, and top tectonic layer. The basement and lower tectonic sequence which are related to Pre-Cenozoic are studied with emphasis.Through the research of regional seismic profiles, the point of view is given thatthe Kongdian Formation of Jiyang is structural transition period. The top-bottomunconformable interface of the Kongdian Formation is found out for the first time,and the basin model is determined primarily, which lay a basis for prototype basinresearch of the Jiyang Kongdian Formation.The distribution status of Middle-Paleozoic is delineated in the Jiyang area.The maximum thickness of Paleozoic lies in the top of the south declivity of half-graben. The thickness gets thinner towards the center of Mesozoic and Cenozoic half-graben basin, and even disappears. Structural action in the west-north affects the distribution of Paleozoic residual strata.6. The features of second-order tectonic sequence of the Jiyang depression isstudied and its evolution history of is rebuilt.Combined with the 5-stage evolution history of the China continent and structure evolution features of the Jiyang area, the structure sedimentary process since Paleozoic is divided into 5 periods - basement forming , Indosinian orogenic, Yanshan negative reversal, Himalayan extension and Neogene subsidence period.Combined with the research results of gravity, magnetic surveying and regionalprofiles, this paper brings forward the idea for the first time that the western boundaryof the Jiyang depression is the Ningjin-Yangpan fracture zone, and forms aside-column assemblage with the Wudi fracture zone.The opinion that under Middle-Cenozoic basins in the middle Jiyang area theremight superimpose an old residual basin is given for the first time. And if it is provedto be true, a new exploration space will be pioneered for Jiyang and even north China.There exists many types of tectonic-stratigraphic traps formed under piezotropy,extension and compound action in Pre-Cenozoic Jiyang. Therein all kinds of burialhills are the most important oil-gas trap type of Pre-Cenozoic, which should besurveyed layeredly according to the layout of oil sources.As such a new challenging project and field, the paper systematically analyses different geophysical responses of the Jiyang area, frames the deep structure of the area, and preliminarily recognizes the Pre-Cenozoic residual basins. It breaks through to a certain extent in both theory and practice, and is expected to provide new geophysical and geotectonic clues for deep exploration in Shengli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dibenzodioxin adsorption/desorption on solid surfaces is an important issue associated with the formation, adsorption, and emission of dioxins. Dibenzodioxin adsorption/desorption behaviors on inorganic materials (amorphous/mesoporous silica, metal oxides, and zeolites) were investigated using in situ FT-IR spectroscopy and thermogravimetric (TG) analysis. Desorption temperatures of adsorbed dibenzodioxin are very different for different kinds of inorganic materials: similar to 200 degrees C for amorphous/mesoporous silica, similar to 230 degrees C for metal oxides, and similar to 450 degrees C for NaY and mordenite zeolites. The adsorption of dibenzodioxin can be grouped into three categories according to the red shifts of the IR band at 1496 cm(-1) of the aromatic ring for the adsorbed dibenzodioxin: a shift of 6 cm-1 for amorphous/mesoporous silica, a shift of 10 cm(-1) for metal oxides, and a shift of 14 cm(-1) for NaY and mordenite, suggesting that the IR shifts are proposed to associated with the strength of the interaction between adsorbed dibenzodioxin and the inorganic materials. It is proposed that the dibenzodioxin adsorption is mainly via the following three interactions: hydrogen bonding with the surface hydroxyl groups on amorphous/mesoporous silica, complexation with Lewis acid sites on metal oxides, and confinement effect of pores of mordenite and NaY with pore size close to the molecular size of dibenzodioxin.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Based on the latest seismic and geological data, tectonic subsidence of three seismic lines in the deepwater area of Pearl River Mouth Basin (PRMB), the northern South China Sea (SCS), is calculated. The result shows that the rifting process of study area is different from the typical passive continental margin basin. Although the seafloor spreading of SCS initiated at 32 Ma, the tectonic subsidence rate does not decrease but increases instead, and then decreases at about 23 Ma, which indicates that the rifting continued after the onset of seafloor spreading until about 23 Ma. The formation thickness exhibits the same phenomenon, that is the syn-rift stage prolonged and the post-rift thermal subsidence delayed. The formation mechanisms are supposed to be three: (1) the lithospheric rigidity of the northern SCS is weak and its ductility is relatively strong, which delayed the strain relaxation resulting from the seafloor spreading; (2) the differential layered independent extension of the lithosphere may be one reason for the delay of post-rift stage; and (3) the southward transition of SCS spreading ridge during 24 to 21 Ma and the corresponding acceleration of seafloor spreading rate then triggered the initiation of large-scale thermal subsidence in the study area at about 23 Ma.