78 resultados para Confocal scanning laser ophthalmoscopy (HRT3)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography ( SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 mu m, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 mu m. It is expected to be used in drug and gene delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation behavior of polyimide (PMDA-ODA) induced by nitrogen laser irradiation was studied. The changes in the surface morphology and the composition of the irradiated polyimide films were examined by scanning electron microscopy, X-ray photoelectron spectroscopy and FT-IR spectroscopy. The initial reaction was achieved by photochemical degradation of polyimide in the highly electronic excited state by the absorption of a second 337 nm photon. Atmospheric oxygen sequentially reacted with the produced radicals to form a highly oxidized layer. The formation of carbonyl group was enhanced by the heat remaining on the irradiated polyimide film surfaces. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A FeNiSiBV amorphous composite coating was developed by laser cladding of metallic powders on AISI 1020 low carbon steel substrate. The coatings were studied using X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The coating reveals different microstructures along the depth of the coating. The transition zone exhibits good metallurgical bonding between the substrate and the coating. The layer consists of amorphous phase in majority and nanocrystalline phase/crystalline phase in minority. Accompanied with the nanocrystalline phase, the amorphous phase is concentrated in the middle of the coating. The crystalline phase in the coating is identified as Fe2B. A gradient distribution of the microhardness ranges from 1208 HV0.2 to 891 HV0.2 in the coating along the depth. The coating shows higher microhardness and better wear property than the substrate.