147 resultados para Circumstellar matter
Resumo:
We reconstruct the interaction rate between dark matter and the holographic dark energy with the parametrized equation of states and the future event horizon as the infrared cutoff length. It is shown that the observational constraints from the 192 type Ia Supernovae (SnIa) and baryon acoustic oscillation (BAO) measurement permit the negative interaction in the wide region. Moreover, the usual phenomenological descriptions cannot describe the reconstructed interaction well for many cases. The other possible interaction is also discussed.
Resumo:
We report some recent progress in constraining the symmetry energy E-sym(rho) at high densities using high-energy heavy-ion collisions. Circumstantial evidence of a soft E-sym(rho) at supra-saturation density is obtained by comparing the pion ratio pi(-)/pi(+) measured recently with FOPI at GSI and the IBUU04 model calculations. Detailed studies indicate that the power of determining the E-sym(rho)from pi(-)/pi(+) is enhanced with decreasing the beam energy to near the pion production threshold, showing a correlation to the increasing nuclear stopping. Among several heavy-ion reaction facilities in the world, the cooling storage ring (HIRFL-CSR), newly commissioned at Lanzhou, delivering heavy-ion beams up to 1 A GeV, to be coupled with advanced detectors will contribute significantly to further studies of the equation of state of asymmetric nuclear matter.
Resumo:
We discuss the onset of superfluidity in neutron stars, where the model of nuclear matter is realized in a high-density and asymmetry state. In particular, we present the study of the effects of microscopic three-body forces on the proton pairing in the 1S0 channel and neutron pairing in 3PF1 channel for β-stable neutron star matter. It is found that the main effects of three-body forces are to shrink the domain of existence of the 1S0 below the threshold of the direct URCA process and to stretch the density range of the 3PF1 pairing in a broad domain so to cover most part of the neutron-star core.
Resumo:
Medium polarization effects are studied for S-1(0) pairing in nuclear matter within BHF approach. The screening potential is calculated in the RPA limit, suitably renormalized to cure the low density mechanical instability of nuclear matter. The self-energy corrections are consistently included resulting in a strong depletion of the Fermi surface. The self-energy effects always lead to a quenching of the gap, whereas it is almost completely compensated by the anti-screening effect in nuclear matter.
Resumo:
We have investigated the isospin dependence of the neutron and proton (PF2)-P-3 superfluidity in isospin-asymmetric nuclear matter within the framework of the Brueckner-Hartree-Fock approach and the BCS theory. We show that the (PF2)-P-3 neutron and proton pairing gaps depend sensitively on isospin asymmetry of asymmetric nuclear matter. As the isospin asymmetry increases, the neutron (PF2)-P-3 superfluidity becomes stronger and the peak value of the neutron (PF2)-P-3 pairing gap increases rapidly. The isospin dependence of the proton (PF2)-P-3 superfluidity is shown to be opposite to the neutron one. The proton (PF2)-P-3 superfluidity becomes weaker at a higher asymmetry and it even vanishes at high enough asymmetries. At high asymmetries, the neutron (PF2)-P-3 superfluidity turns out to be much stronger than the proton one, implying that the neutron (PF2)-P-3 superfluidity is dominated in the highly asymmetric dense interior of neutron stars.
Resumo:
We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartee-Fock approximation scheme with the Argonne V-14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.
Resumo:
We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hotka on condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.
Resumo:
We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
We introduce and summary our research progress on the effective masses of K meson in dense nuclear matter.
Resumo:
We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.
Resumo:
The neutron (PF2)-P-3 pairing gap in pure neutron matter, neutron (PF2)-P-3 gap and neutron-proton (SD1)-S-3 gap in symmetric nuclear matter have been studied by using the Brueckner-Hartree-Fock(BHF) approach and the BCS theory. We have concentrated on investigating and discussing the three-body force effect on the nucleon superfluidity. The calculated results indicate that the three-body force enhances remaxkably the (PF2)-P-3 superfluidity in neutron matter. It also enhances the (PF2)-P-3 superfluidity in symmetric nuclear matter and its effect increases monotonically as the Fermi-momentum k(F) increases, whereas the three-body force is shown to influence only weakly the neutron-proton (SD1)-S-3 gap in symmetric nuclear matter.
Resumo:
Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).
Resumo:
The differential isospin-fractionation (IsoF) during the liquid-gas phase transition in dilute asymmetric nuclear matter is studied as a function of nucleon momentum. Within a self-consistent thermal model it is shown that the neutron/proton ratio of the gas phase becomes smaller than that of the liquid phase for energetic nucleons, although the gas phase is overall more neutron-rich. Clear indications of the differential IsoF consistent with the thermal model predictions are demonstrated within a transport model for heavy-ion reactions. Future comparisons with experimental data will allow us to extract critical information about the momentum dependence of the isovector strong interaction.