97 resultados para Car Carrier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA/poly-L-lysine (PLL) capsules were constructed through a layer-by-layer (LbL) self-assembly of DNA and PLL on CaCO3 microparticles, and then used as dual carriers for DNA and drug after dissolution of carbonate cores. The permeability of DNA/PLL microcapsules was investigated with fluorescence probes with different molecular weights by confocal microscopy. The result revealed that the fluorescence probes were able to penetrate the capsule walls even its molecular weight up to 150 kDa. The resultant capsules were used to load drug model molecules-fluorescein isothiocyanate (FITC)-dextran (4 kDa) via spontaneous deposition mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The affinity and specificity of drugs with human serum albumin (HSA) are crucial factors influencing the bioactivity of drugs. To gain insight into the carrier function of HSA, the binding of levamlodipine with HSA has been investigated as a model system by a combined experimental and theoretical/computational approach. The fluorescence properties of HSA and the binding parameters of levamlodipine indicate that the binding is characterized by one binding site with static quenching mechanism, which is related to the energy transfer. As indicated by the thermodynamic analysis, hydrophobic interaction is the predominant force in levamiodipine-HSA complex, which is in agreement with the computational results. And the hydrogen bonds can be confirmed by computational approach between levamlodipine and HSA. Compared to predicted binding energies and binding energy spectra at seven sites on HSA, levamlodipine binding HSA at site I has a high affinity regime and the highest specificity characterized by the largest intrinsic specificity ratio (ISR). The binding characteristics at site I guarantee that drugs can be carried and released from HSA to carry out their specific bioactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oxygen carrier was prepared by encapsulating carbonylated hemoglobin (CO-Hb) molecules into polypeptide vesicles made from poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) diblock copolymers in aqueous medium at pH 5.8. The encapsulation was confirmed by confocal laser scanning microscopy (CLSM). The morphology and size of the Vesicles were studied by field-emission scanning electron microscopy (ESEM). They had a spherical shape with it mean diameter of about 4 to 5 mu m. The encapsulation efficiency of hemoglobin was 40 wt %, and the hemoglobin content in the vesicles was 32 wt %. The CO-Hb encapsulated in the PLL-b-PPA vesicles was more stable than free CO-Hb under ambient conditions, In the presence of a O-2 atmosphere, the CO-Hb in the vesicle could be converted into oxygen-binding hemoglobin (O-2-Hb) under irradiation of visible light for 2 h. Therefore, the CO-Hb/PLL-b-PPA vesicles are expected to be used its red blood cell substitutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the concentration of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6, 78-i,j)quinolizin-11-one (C545T) as dopant in polyfluorene (PFO) on the charge-carrier transport and electroluminescence (EL) performance were investigated by steady-state and transient EL measurements. A fully green emission from C545T was observed and the EL performance depends strongly on the C545T concentration. The mobility in the C545T-doped PFO film was determined by transient EL. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the C545T molecules. The mobility in C545T:PFO changed significantly with the C545T concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of doped fluorescent dye 4-(dicyanomethylene)-2-i-propyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTI) on the charge carrier injection, transport and electroluminescence (EL) performance in polyfluorene (PFO)-based polymer light-emitting diodes (PLEDs) were investigated by steady-state current-voltage (I-V) characteristics and transient EL measurements. A red EL from DCJTI was observed and the EL performance depended strongly on the DCJTI concentration. The analysis of the steady-state I-V characteristics at different DCJTI concentrations found that three regions was shown in the I-V characteristics, and each region was controlled by different processes depending on the applied electric field. The effect of the dopant concentration on the potential-barrier height of the interface is estimated using the Fowler-Nordheim model. The dopant concentration dependence of the current-voltage relationship indicated clearly the carrier trapping by the DCJTI molecules. The mobility in DCJTI: PFO changed significantly with the DCJTI concentration, and showed a nontrivial dependence on the doping level. The behavior may be understood in terms of the formation of an additional energy disorder due to potential fluctuation caused by the Coulomb interaction of the randomly distributed doping molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM- 41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-quinolinolato) aluminum (Alq(3)) on the charge carrier transport in Alq(3):DCJTB was investigated by measuring the steady current-voltage characteristics and the transient electroluminescence. The dopant concentration dependence of the current-voltage relationship clearly indicates the carrier trapping by the DCJTB molecule. The DCJTB concentration significantly affects the electron mobility in Alq(3):DCJTB. The mobility has a nontrivial dependence on the doping level. For relatively low doping levels, less than 1%, the electron mobility of Alq(3):DCJTB decreases with the doping level. An increasing mobility is then observed if the dopant concentration is further increased, followed by a decrease for doping levels larger than similar to2%. The change of the electron mobility with the DCJTB concentration in Alq(3) is attributed to the additional energetic disorder due to potential fluctuations caused by the dipole-dipole interaction of random distribution dopant at the relatively low doping concentration, and to the phase separation at the high doping concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl- 9-enyl)-4H-pyran(DCJTB) as dopant in tris(8-hydroxyquinoline) aluminium (Alq(3)) on the charge carrier recombination was studied by transient electroluminescence (EL). The electron-hole recombination coefficient (gamma) was determined from the long-time component of the temporal decay of the EL intensity after a rectangular voltage pulse was turned off. It was found that the coefficient monotonically decreased with an increase in the DCJTB-doping concentration. The monotonic decrease is attributed to concentration quenching on the excitons and coincided well with the reduction of the EL efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of copper phthalocyanine (CuPc) and LiF interfacial layers on the charge-carrier injection in NN'-di(naphthalene-l-yl)N,N'-diphenyl-benzidine (NPB)/tris(8-hydroxyquinoline) aluminium (Alq(3)) organic heterojunction devices have been studied through the analysis of current-voltage characteristics. The investigation clearly demonstrated that the hole injection into NPB from anode is Fowler-Nordheim (FN) tunneling and the electron injection into Alq3 from cathode is Richardson-Schottky (RS) thermionic emission. The barrier heights obtained from the FN and RS models proved that the band alignments for charge-carrier injection are greatly improved by the CuPc and LiF interfacial layers, which should fully clarify the role of the interfacial layer on the improvement of device performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the current-voltage and electroluminescent (EL) characteristics of single-layer organic devices based on poly(9-vinylcarbazole) (PVK) and tris(8-hydroxyquinoline)aluminium (Alq(3)) blend with different PVK : Alq(3) concentrations. The experimental results from the observed thickness and temperature dependence clearly demonstrate that the current at low voltage is due to the holes injected at the anode and is space-charge limited, whereas the current at the high voltage that steeply increases is explained as the electron tunnelling injection at the cathode. The hole mobility is directly determined by space-charge-limited current at the low voltage region and decreases with increasing Alq(3) content in the blend. The EL efficiency shows concentration dependence, which is attributed to the change of the transport of electrons and holes in the blend film.