81 resultados para Ca2 -deficient Photosystem II
Resumo:
采用柱层析法从菠菜叶绿体中分离纯化得到高等植物光系统Ⅱ(PSⅡ)反应中心色素蛋白复合体Dl/D2/Cyt b559,并对其性质,特别是光破坏作用的分子机理进行了研究。主要结果如下: 1、PSⅡ反应中心复合物所含的色素比大约为Chla/2 Pheo a=6.0。其四阶导数光谱在红区有两个峰,表明该反应中心至少存在两种结合状态的Chla。 2、Dl/D2/Cyt b559复合物的荧光相对产率及发射光谱的谱带位置与样品的浓度直接相关。只有当样品的浓度达到足够稀的程度(Chla和Pheo a总浓度小于1μg/ml),才能得到较真实的荧光光谱,其峰位在681nm处。 3、Dl/D2/Cyt b559复合物的CD光谱在红区(Qy带)有一对反向谱带,正蜂为680nm,负峰为660nm,而在β-胡萝卜素的吸收区没有明显的CD信号。当该反应中心复合物受光破坏后,CD信号明显下降,而且当正峰完全消失后,负峰仍然存在,说明负峰不仅包含P680 的信号,也包含其它色素分子的信号,很可能有部分来源于Pheo a。 4、Dl/D2/Cyt b559复合物在488nm处激发的共振拉曼光谱显示四个主要谱带,其峰位分别在1532(ν1)、1165(ν2)、1010(ν3)和970cm-1(ν4)处,表明PSⅡ反应中心结合的B-胡萝卜素分子是全反式构型。Dl/D2/Cyt b559复合物的色素抽提液的拉曼光谱也显示四个主要的拉曼峰,其中ν4谱带的强度急剧下降,说明PSⅡ反应中心内部结合的β-胡萝卜素分子与抽提液中自由的β-胡萝卜素分子的构象不同,而与光合细菌反应中心内部的类胡萝卜素分子的构象相似,其共轭多烯链的平面也处于扭曲状态。 5、光照使PSⅡ反应中心的原初电子供体P680受到破坏,在光照后的暗放置过程中P680分子继续受到破坏,表明在光照过程中很可能有一个相对稳定的反应中间体产生,以至于光照后暗放置过程中Dl/D2/Cyt b559复合物的光谱特性继续发生变化。也就是说,PSⅡ反应中心Dl/D2/Cyt b559复合物的光破坏不是一步反应,而是一个多步反应或多条途径。 6、光照使Dl/D2/Cyt b559复合物中的组氨酸(His)残基受到很大程度的破坏,甲硫氨酸(Met)残基的含量也略有下降,而其它氨基酸的含量基本保持不变。His残基的破坏很可能与光照后暗放置过程中Dl/D2/Cyt b559复合物的光谱特性变化相关。我们认为His残基的光照破坏很可能是Dl/D2/Cyt b559复合物受光照破坏的另一分子机理。 7、人工电子受体癸基质体醌(DPQ)可以与Dl/D2/Cyt b559复合物进行重组。Dl/D2/Cyt b559复合物的荧光衰减分析表明,在DPQ重组之后,两个长寿命荧光组分(24ns和73ns)的寿命减小,而且占整个荧光的分数也下降,表明这两个长寿命荧光衰减组分均来源于电荷重组过程。同时,β-胡萝卜素分子在DPQ重组之后更易于被光照破坏,这个过程可能与β-胡萝卜素分子的生理功能相关。 8、在没有外加人工电子受体的情况下,光照使DDl/D2/Cyt b559 复合物的多肽组成发生一定变化。SDS-PAGE图谱中出现一个约40KDa的新谱带,同时Dl与D2多肽的表观分子量增加,谱带染色强度下降。 9、本文根据以上实验结果,着重对Dl/D2/Cyt b559复合物光破坏的分子机理进行了分析和讨论,并在D1蛋白裂解的两种可能途经中又增加了一个新的可能导致Dl蛋白裂解的途径,即:His残基的光照破坏可以作为Dl/D2/Cyt b559复合物光破坏及Dl蛋白裂解的又一分子机理,这为深入研究PSⅡ反应中心的光破坏提供了新的线索,也为今后研究活体内光抑制现象的分子机制打下了良好的基础
Resumo:
光系统I(photosystem I,PSI)是光合膜上参与光合作用原初反应过程的主要膜蛋白超分子复合体之一。高等植物的PSI是由核心复合体(14个亚基)和捕光色素蛋白复合体I(light-harvesting complex I, LHCI,含4个Lhca蛋白)组成的超分子复合体,它的主要功能是调节光诱导的从囊腔侧的质体兰素(plastocyanin,PC)向基质侧的铁氧还蛋白(ferredoxin,Fd)的电子传递。研究PSI的结构与功能对于揭示植物光合作用高效吸能、传能的分子机理具有重要意义。在本文中,我们首先建立了分离制备PSI及其亚组分的方法(Qin et al., 2007),并在此基础上对PSI在强光破坏的过程中结构与功能的变化进行了比较深入的研究。本论文的主要研究结果如下: 1.快速、高效分离纯化PSI及其亚组分方法的建立。 国际上传统的PSI分离方法(Bassi and Simpson, 1987; Croce et al., 1998; Påsllon et al.1995; Schmid et al. 2002),耗时长较长(分离PSI颗粒一般需要多于20h的蔗糖超速离心过程,而分离PSI的亚组分则需要25-60h的蔗糖超速离心过程)、得率较低,这不便于PSI方面的研究,为此我们首先改进了传统的分离纯化方法。新方法以高等植物菠菜叶片作为原材料,使用Triton X-100作为增溶剂,通过差速离心技术获得的粗制品,然后使用十二烷基麦芽糖苷(n-Dodecyl β-D-maltoside, DDM)增溶PSI粗制品,之后采用100,000×g,垂直转头(Beckman VTi 50)0.1-1 mol/L蔗糖梯度离心3h获得纯度较高的PSI颗粒。然后使用DDM和3-(N, N-Dimethylpalmitylammonio) propanesulfonate (zw 3-16)两种增溶剂处理PSI,后经100,000×g,垂直转头(Beckman VTi 50)蔗糖梯度离心4h获得纯度较高的PSI core、LHCI-680、LHCI-730复合体。采用吸收光谱、荧光光谱技术研究了各样品的基本光谱学特性,采用HPLC分析了各样品的色素组成,结果显示平均每个Lhca蛋白结合1.5-1.6黄体素,1.0紫黄质, 0.8-1.1 β-胡萝卜素,该方法制备的LHCI比传统方法制备的LHCI减少了类胡萝卜素的丢失。这一工作为以后结构与功能的研究工作奠定了良好的基础。 2.PSI复合体及其亚组分的特性研究。 PSI颗粒具有一定的适应环境酸碱变化的能力,在我们的试验条件下PSI颗粒在pH 5-10相对稳定。PSI、LHCI很难通过加入Mg2+、Ca2+、Na+阳离子聚集沉淀。经绿胶鉴定我们制备的LHCI-680、LHCI-730是二聚体形式;而把PSI绿胶后再进行第二向十二烷基硫酸钠-聚丙烯酰氨凝胶电泳(SDS-PAGE)电泳,结果发现在稍强烈的绿胶增溶条件下,LHCI-730是以二聚体的形式存在,但是LHCI-680却是以单体的形式出现。这说明LHCI形成的二聚体,尤其是LHCI-680,较容易受到增溶处理而分离成单体形式,解释了以生化分离手段得到的LHCI-680的聚集形式是单体还是二聚体这个目前国际上还有有争议的问题。 3.PSI、LHCI光破坏的基本特点。 采用白光(2500 μmol•m-2•s-1)照射PSI颗粒,通过SDS-PAGE及室温吸收光谱检测光照过程中PSI复合体的变化,结果表明:去氧处理能够大大延缓PSI的光破坏,而PSI脱辅基蛋白不会发生光破坏,这说明PSI发生的光破坏可能与Chl与O2的相互作用有关。采用白光(1000 μmol•m-2•s-1、300 μmol•m-2•s-1)处理LHCI-680、LHCI-730,发现LHCI-680被破坏的速度明显快于LHCI-730被破坏的速度,这是首次在体外分离的水平上揭示了不同LHCI光破坏方面的差异。LHCI-680与LHCI-730在光破坏方面的差异可能与两种天线蛋白结合的类胡萝卜素的种类和数量不同有关,还可能与二者结合的长波长Chl的情况有关,但是具体的原因还有待于进一步的研究。 4.结合不同的捕光色素蛋白复合体(light-harvesting complex,LHC)对PSI光破坏的影响。 为了研究结合不同的捕光天线对PSI光破坏的影响,我们制备了PSI-LHCII、PSI、PSI core三种复合体。使用白光(2500 μmol•m-2•s-1)照射这三种复合体,并通过测定各复合体在光破坏过程中蛋白亚基、吸收光谱、PSI活性及P700含量的变化,对比三者光破坏的速度,结果发现PSI-LHCII在这三种复合体中光破坏速度最快,而PSI和PSI core两种复合体光破坏速度基本一致。我们推测在光照过程中部分光系统II捕光Chl a/b蛋白复合体II(light-harvesting complex II,LHCII)能够向PSI core传递能量,另外PSI-LHCII绿胶分析的结果表明发生了LHCII三聚体向单体的转变,这种强光下发生的LHCII聚合形式的转化可能是高光强下调节光能捕获的一种机制,由于植物体内具有较完整的保护系统,体内PSI-LHCII的光破坏可能与体外情况不同;另外LHCI与PSI core的解离可能发生在强光照射的早期,具有保护PSI core减少光破坏的积极作用。该部分的研究首次观察了结合不同的捕光天线对PSI光破坏的影响。
Resumo:
Thiosemicarbazone derivatives have been used as ion carriers for the preparation of PVC-matrix based mercury(II)-selective membrane sensors. The electrodes give near-Nernstian responses in the linear concentration range of 1.0×10-1-5.0×10-6 M with detection limits of the order of 10-6 M. The stable potentiometric signals are obtained within a short time period of 20-25s. The effect of different plasticizers has been studied and dioctylsebacate (DOS) found to give a better response in comparison to other plasticizers. Selectivity coefficient values (log KPotHg,M) have been evaluated using fixed interference method. Better selectivity for mercury(II) ions is observed over many of the monovalent (Na+, K+ and NH4+) and divalent ions (Mg2+, Ca2+, Zn2+, Pb2+, Ni2+, Co2+, etc.). The sensors have also been used as indicator electrodes in potentiometric titration of mercury(II) ions with EDTA and its determination in synthetic water samples.
Resumo:
The speciation and distribution of Zn(II) and the effect of Gd(III) on Zn(II) speciation in human blood plasma were studied by computer simulation. The results show that, in normal blood plasma, the most predominant species of Zn(II) are [Zn(HSA)] (58.2%), [Zn(IgG)](20.1%), [Zn(Tf)] (10.4%), ternary complexes of [Zn(Cit)(Cys)] (6.6%) and of [Zn(Cys)(His)H] (1.6%), and the binary complex of [Zn(CYS)(2)H] (1.2%). When zinc is deficient, the distribution of Zn(II) species is similar to that in normal blood plasma. Then, the distribution changes with increasing zinc(II) total concentration. Overloading Zn(II) is initially mainly bound to human serum albumin (HSA). As the available amount of HSA is exceeded, phosphate metal and carbonate metal species are established. Gd(III) entering human blood plasma predominantly competes for phosphate and carbonate to form precipitate species. However, Zn(II) complexes with phosphate and carbonate are negligible in normal blood plasma, so Gd(III) only have a little effect on zinc(II) species in human blood plasma at a concentration above 1.0x10(-4) M.
Resumo:
A multiphase model of metal ion speciation in human interstitial fluid was constructed and the effect of Pr(III) on Ca(II) speciation was studied. Results show that free Ca2+, [Ca(HCO3)], and [Ca(Lac)] are the main species of Ca(II). Because of the competition of Pr(III) for ligands with Ca(II), the percentages of free Ca2+, [Ca(Lac)], and [Ca(His)(Thr)H-3] increase gradually and the percentages of CaHPO4(aq) and [Ca(Cit)(His)H-2] decrease gradually with the increase in the total concentration of Pr(III). However, the percentages of [Ca(HCO3)] and CaCO3(aq) first increase and then begin to decrease when the total concentration of Pr(III) exceeds 6.070 x 10(-4) M.
Resumo:
Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol(-1) by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C-O could combine strongly with Cu2+.