235 resultados para CHEMICALLY MODIFIED ENZYMES
Resumo:
9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.
Resumo:
A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.
Resumo:
A stable lipid cast film was made by casting a lipid in chloroform onto a glassy carbon electrode. We imbedded a new mediator norepinephrine into this lipid cast film, which was considered as a biological membrane model. Through electro catalytic oxidation of ascorbic acid by this system, the anodic overpotential was reduced by about 250 mV compared with that obtained at a bare glassy carbon electrode. The electrochemical behavior of norepinephrine in the cast film was controlled by diffusion. The obtained diffusion coefficient of ascorbic acid was 1.87 x 10(-5) cm 2 s(-1). The catalytic current increased linearly with the concentration of ascorbic acid in the range from 0.5 to 10 mM. Using cyclic voltammetry, we obtained two peaks for ascorbic acid and uric acid in the same solution. The separation between the two peaks is about 147 mV. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, an organic-inorganic composite film of heteropolyanion was Formed by attaching a Keggin-type heteropolyanion, SiW12O404-, on carbon electrode surface derivatized by 4-aminophenyl monolayer. The composite film thus grafted on carbon electrode surface has good stability because of the ionic bonding character between SiW12O404- and surface aminophenyl groups. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used to characterize the composite film. Compared with SiW12O404- electrodeposited on a bare glassy carbon electrode (GCE), the composite film gives three more sharp and well-defined redox couples attributed to two one- and two-electron processes, and the analyses of the voltammograms of SiW12O404- anion in the composite film modified on GCE shows that its surface coverage is close to a closest packing monolayer. STM characterization shows that a two-dimensional order heteropolyanion monolayer was formed on HOPG substrate. The composite film provides a favorable environment for electron and proton transfer between SiW12O404- ion and electrode surface, which may make it suitable for various applications in sensors and microelectronics devices.
Resumo:
The film by tetraphenylporphyrin((TPP)H-2) vapor deposition on iron was investigated by means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of(TPP)H-2 was gained directly from the deposited samples. N(1s) binding energy of the surface was greatly changed after the deposited sample was washed with solvent. It is indicated that the deposited film is composed of an outer-layer of physically adsorbed (TPP)H-2, and an inner-layer of chemically modified (TPP)H-2.
Resumo:
A composite film containing heteropolyanion was fabricated on gold by attaching the Keggin-type heteropolyanion, PMo12O403- on a 4-aminothiophenol SAM via Au-S bonding. Reflection FTIR, cyclic voltammetry and XPS were used for the characterization of the composite film. Reflection FTIR studies indicate that there is some Coulombic interaction between PMo12O403- and the surface amino group in the composite film, which greatly improves the film stability and prevents effectively the destructive intermolecular aggregation. The composite him shows three reversible redox couples within the pH range pH less than or equal to 7.0, attributed to three two-electron and two-proton electrochemical reduction-oxidation processes of PMo12O403-. Compared with PMo12O403- in the solution, the PMo12O403- of the composite film electrode can exist in a larger pH range, and shows smaller peak-to-peak separation, and more reversible reaction kinetics. Moreover, the composite him obtained shows a good catalytic activity for the reduction of BrO3-. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A poly(4-vinyl)pyridine (PVP)/Pd film electrode was constructed for the electrocatalytic detection of hydrazine. The preparation of the PVP/GC electrode was performed by electropolymerization of the monomer 4-vinylpyridine onto the surface of a glassy carbon electrode. Subsequently, palladium is electrodeposited onto the polymer modified electrode surface. The ion-exchange function of PVP polymer is helpful to this process in view of the tetrachlorapalladate anion. Compared with the Pd/GC electrode, the modified electrode displays a better mechanical stability in a flowing stream. The PVP/Pd film electrode exhibits higher sensitivity when detecting hydrazine with a detection limit of 0.026 ng (S/N=3).
Resumo:
Eastman-AQ 55D was coated onto a carbon fiber microelectrode surface, and the resulting modified electrodes exhibited high stability. Substantial improvement in the stability was observed as a result of good adhesion and the strong binding of large hydrophobic cations of Eastman AQ 55D. The electrode reaction of meldola blue bound in the polymer film showed a reversible, one-electron transfer process. The effects of solution pH and influence of supporting electrolyte on the modified carbon fiber microelectrode are discussed. The diffusion coefficient of meldola blue in the AQ polymer film determined by chronoamperometry is 2.3 x 10(-18) cm(2) s(-1), and the heterogeneous rate constant of meldola blue at the AQ polymer film/electrode determined by normal pulse voltammetry is 3.97 x 10(-3) cms(-1).
Resumo:
Probe beam deflection(PBD) technique together with electrochemical techniques such as cyclic voltammetry was used to study the ion exchange in prussian blue(PB) film and its analogue indium hexacyanoferrate (InHCF) chemically modified electrodes, The ion exchange mechanism of PB was verified as following: K2Fe2+FeI(CN)(6)(-e--K+)reversible arrow(+e-+K+)KFe(3+)Fe(I)(CN)(6)(-xe--xK+)reversible arrow(+xe-+xK+) [Fe3+FeI(CN)(6)](x)[KFe3+FeI(CN)(6)](1-x) where on reduction in contact with an acidic KCl electrolyte, H+ enter PB film before K+. Both the cations and anions participate concurrently in the redox process of InHCF, meanwhile K+ ion plays a major role in the whole charge transfer process of this film with increasing radii of anions.
Resumo:
Twelve mediators have been modified by adsorption onto the paraffin impregnated graphite electrodes (IGE). The resulting electrodes exhibit electrocatalytic activity of different degrees towards oxidation of 1,4-dihydronicotinamide adenine dinucleotide (NADH). The electrocatalytic ability of the chemically modified electrode (CME) depends mainly on the formal potential and molecular structure of mediator. The formation of the charge transfer complex between NADH and adsorbed mediator has been demonstrated by the experiments using a rotating disk electrode. An electrocatalytic scheme obeying Michaelis-Menten kinetics has been confirmed, and some kinetic parameters were estimated. The solution pH influences markedly the electrocatalytic activity of the modified electrode. Various possible reasons are discussed.
Resumo:
A chemically modified electrode (CME) constructed by adsorption of aquocobalamin (VB12a) onto a glassy carbon electrode surface was demonstrated to catalyze the electro-oxidation of cysteine, a sulfhydryl-containing compound. The sulfhydryl oxidation occured at 0.54-0.88 V vs. Ag/AgCl depending on pH value (3.0-10.0). The electrocatalytic behavior of cysteine is elucidated with respect to solution pH, operating potential and other variables as well as the CME preparation conditions. When used as the sensing electrode in flow injection amperometric detection, the CME permitted detection of the compound at 0.8 V. The detection limit was 1.7 pmol. The linear response range went up to 1.16 nmol. The stability of the CME was shown by RSD (4.2%) over 10 repeated injections.
Resumo:
A conducting platinum cluster compound K1.64Pt(C2O4)(2) was electrochemically synthesized on a glassy carbon electrode through the electrooxidation of K2Pt(C2O4)(2) in an aqueous medium using single potential step and cyclic voltammetry methods. The precursor K2Pt(C2O4)(2) was prepared by a ligand exchange reaction between C2O42- and PtCl42-. During single potential step experiments, the electrolytic current corresponding to the oxidation of K2Pt(C2O4)(2) increased dramatically after a sharp decrease at the beginning (due to the formation of conducting K1.64Pt(C2O4)(2) on the surface of the working electrode). Two kinds of mechanism account for the current transients at the different applied potentials. Cyclic voltammetry was conducted with K1.64Pt(C2O4)(2) on the surface of the working electrode and a steady-state diffusion current was observed. Since the material grew in a fibrous manner, each conducting fiber which was in contact with the electrode could serve as an ultramicroelectrode. The behavior of the working electrode was thus changed from a plain to an ultramicroelectrode array.
Resumo:
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.
Resumo:
高效毛细管电泳(High performance capillary electrophoresis缩写HPCE)是一种高效、快速分离复杂混合物的强有力工具.毛细管电泳电化学检测(Capillary electrophoresiselectrochemistry缩写CEEC)在HPCE中是一个极有前途的研究领域.安培检测由于灵敏度高,死体积小,成本低,而受到极大关注.把化学修饰电极(Chemically modified electrode缩写CME)用于CEEC的报道很少.本文介绍了一种新颖的方法将铂修饰到碳纤维电极上,并用于CEEC中检测肼.肼是一类比较难氧化的化合物,在普通固体电极上过电位很高,不适于电化学检测.我们做的修饰电极,对肼不仅有很好的催化活性,而且有很好的稳定性.
Resumo:
1:12 phosphomolybdic anion doped polypyrrole film electrode was characterized by in-situ UV-vis spectroelectrochemistry, X-ray photoelectron spectroscopy(XPS), scan electronic microscopy(SEM) and electron spin resonance(ESR) spectroscopy.