145 resultados para BN NANOTUBES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform Gd(OH)(3) nanotubes have been prepared via a simple wet-chemical route at ambient pressure and low temperature, without any catalysts, templates, or substrates, in which Gd(NO3)(3) was used as the gallium source and ammonia as the alkali. SEM and TEM images indicate that the as-obtained Gd(OH)3 entirely consists of uniform nanotubes in high yield with diameters of about 40 nm and lengths of 200-300 nm. The temperature-dependent morphological evolution and the formation mechanism of the Gd(OH)(3) nanotubes were investigated in detail. Furthermore, the Gd2O3 and Eu3+-doped Gd2O3 nanotubes, which inherit their parents' morphology, were obtained during a direct annealing process in air. The corresponding Gd2O3:Eu3+ nanotubes exhibit the strong red emission corresponding to the D-5(0)-F-7(2), transition of the Eu3+ ions under UV light or low-voltage electron beam excitation, which might find potential applications in the fields such as light-emitting phosphors, advanced flat panel displays, or biological labeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing worldwide demand for carbon nanotubes (CNTs) and increasing concern regarding how to safely develop and use CNTs are requiring a low-cost, simple, and highly sensitive CNT detection assay for toxicological evaluation and environmental monitoring. However, this goal is still far from being achieved. All the current CNT detection techniques are not,applicable for automation and field analysis because they are dependent on highly expensive special instruments and complicated sample preparation. On the basis of the capability of single-walled carbon nanotubes (SWNTs) to specifically induce human telomeric i-motif formation, we design an electrochemical DNA (E-DNA) sensor that can distinguish single- and multiwalled carbon nanotubes both in buffer and in cell extracts. The E-DNA sensor can selectively detect SWNTs; with a direct detection limit of 0.2 ppm and has been demonstrated in cancer cell extracts. To the best of our knowledge, this is the first demonstration of a biosensing technique that can distinguish different types of nanotubes. Our work will provide new insights into how to design a biosensor for detection of carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) can selectively induce human telomeric i-motif DNA formation at pH 7.0. Based on this property, we design a DNA nanomachine induced by SWNTs on gold surface. The motor DNA is human telomeric G-quadruplex DNA. The reversible hybridization between the motor DNA and its complementary human telomeric i-motif DNA can be modulated by SWNTs without changing solution pH. Up to now, to our knowledge, there is no report to show that a DNA nanomachine is induced by SWNTs or a DNA nanomachine can detect i-motif formation at pH 7.0. Our work may provide a new concept for designing an SWNT-induced DNA nanomachine and for the detection of i-motif DNA structure at pH 7.0. DNA hybridization, conformational transition and i-motif formation have been characterized on surface or in solution by fluorescence confocal microscopy, circular dichroism, DNA melting and gel electrophoresis. The folding and unfolding kinetics of the DNA nanomachine on gold surface were studied by Fourier transform-surface plasmon resonance (FT-SPR). All these results indicate that SWNTs can induce the DNA nanomachine to work efficiently and reversibly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural tailoring for dimensionally confined electrical properties is fundamentally important for nanodevices and the relevant technologies. Titanate-based nanotubes were taken as a prototype one-dimensional material to study. First, Na0.96H1.04Ti3O7 center dot 3.42H(2)O nanotubes were prepared by a simple hydrothermal condition, which converted into Na0.036H1.964Ti3O7 center dot 3.52H(2)O nanotubes by a subsequent acidic rinsing. Systematic sample characterization using combined techniques of X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, electron paramagnetic resonance, Fourier transform infrared spectroscopy, elemental analyses, and alternative current impedance indicated that both nanotubes possessed a scrolled trititanate-type structure with the (200) crystal face predominant on the tube surface. With increasing temperature, both nanotubes underwent a continuous dehydration process, which however imposed different impacts oil the structures and electrical properties, depending on the types of the nanotubes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrophobic carbon nanotubes-ionic liquid (CNTs-IL) get forms a stable modified film on hydrophobic graphite electrode surface. Laccase immobilized on the CNTs-IL gel film modified electrode shows good thermal stability and enhanced electrochemical catalytic ability. The optimal bioactivity occurs with increasing temperature and this optimum is 20 degrees C higher in comparison to free laccase. The improvement of laccase thermal stability may be due to the microenvironment of hydrophobic CNTs-IL gel on graphite electrode surface. On the other hand, the sensitive detection of oxygen has been achieved due to the feasibility of oxygen reduction by both of laccase and nanocomposite of CNTs-IL gel. Furthermore, the laccase hybrid nanocomposite also shows the fast electrochemical response and high sensitivity to the inhibitors of halide ions with the approximate IC50 of 0.01, 4.2 and 87.5 mM for the fluoride, chloride and bromide ions, respectively. It implies the feasibility of laccase modified electrode as an inhibition biosensor to detect the modulators of laccase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for preparing nanoelectrode ensembles based on semi-interpenetrating network (SIN) of multi-walled carbon nanotubes (MWNTs) on gold electrode through phase-separation method is initially proposed. Individual nanoelectrode owns irregular three-dimensional MWNTs networks, which is denoted as SIN-MWNTs. On the as-prepared SIN-MWNTs nanoelectrode ensembles, the assembled MWNTs clusters in nanoscale serve as individual nanoelectrode and the electroinactive lipid networks located on the top of alkanethiol monolayer are used as a shielding layer. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy (SEM) were used to characterize the as-prepared SIN-MWNT nanoelectrode ensembles. Experimental results indicate that the well-defined nanoelectrode ensembles were prepared through self-assembly technology. Meantime, sigmoid curves in a wide scanning range can be obtained in CV experiments. This study may pave the way for the construction of truly nanoscopic nanoelectrode arrays by bottom-up strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphology of synthetic imogolite nanotubes formed in droplet evaporation was investigated by transmission electron microscopy and electron diffraction. The nanotubes form a dense entangled network at higher concentrations, while at lower concentrations the nanotubes are liable to form oriented bundles. Under enthanol atmosphere, individual dispersion of nanotubes was observed for the first time, which reveals the length polydispersity of synthetic imogolite nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes paste (CNTP) electrode was prepared with multi-walled carbon nanotubes and methyl silicone oil. Polyoxometalates (POMs) were assembled on the electrode surface with different methods, and investigated by cyclic voltammetry and Raman spectroscopy. Experiments showed that POMs/CNTP electrode prepared by direct method had better performance. K6P2Mo18O62 center dot 14H(2)O (P2Mo18) assembled CNTP electrode (P2Mo18/CNTP) electrode possessed good reversibility and could catalyze the reduction of bromate and iodate in 0.1 M H2SO4 Solution. Further, the multilayer films of P2Mo18 assembled CNTP electrodes were fabricated by layer-by-layer technique, which showed higher electrocatalytic activities. All these POMs assembled CNTP electrodes prepared exhibited good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through a new and simple ion-exchange route, two-electron redox mediator thionine has been deliberately incorporated into the carbon nanotubes (CNTs)/Nafion composite film due to the fact that there is strong interaction between any of two among the three materials (ion-exchange process between thionine and Nafion, strong adsorption of thionine by CNTs, and wrapping and solubilizing of CNTs with Nation). The good homogenization of electron conductor CNTs in the integrated films provides the possibility of three-dimensional electron conductive network. The resulting integrated films exhibited high and stable electrocatalytic activity toward NADH oxidation with the significant decrease of high overpotential, which responds more sensitively more than those modified by thioine or CNTs alone. Such high electrocatalytic activity facilitated the low potential determination of NADH (as low as -0.1 V), which eliminated the interferences from other easily oxidizable species. In a word, the immobilization approach is very simple, timesaving and effective, which could be extended to the immobilization of other cationic redox mediators into the CNTs/Nafion composite film. And these features may offer potential promise for the design of amperometric biosensors.