79 resultados para B cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue kallikrein, generally existing in living bodies as prokallikrein, is a serine proteinase that has proven of great significance to treat hypertension, cardiopathy and nephropathy. Although the extraction of tissue kallikrein from human urine is the most commonly used method to obtain such a protein, not only the yield is very little, but also the procedure is rather complex. Furthermore, the biological safety is uncertain. Therefore, the preparation of such a protein by genetic engineering method, including gene expression, cell culture, separation and purification, is very important. In this paper, a new method to obtain purified tissue prokallikrein excreted from insect cells by liquid chromatography has been proposed. In contrast to the previously published papers, the purification procedure is simplified to only three steps with the final yield of 57% and the purity of 95%, which is not only convenient, but also low-cost and suitable for the large-scale preparation of such a protein. The purified protein is further validated as prokallikrein by high performance liquid chromatography-mass spectrometry and amino acid sequencing. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)(3) and [Pt(H2NCH2CH2NH2)(2)]Cl-2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (220) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present review, we summarize the recent progress in electrocatalysts for direct alcohol fuel cells, focussing on the research of electrocatalysts for both alcohol oxidation and oxygen reduction, which are crucial in the development of fuel cells. A modified EG (ethylene polyol) method to prepare well-dispersed nano-sized Pt-based electrocatalysts with high loadings is reported. By this method, a more active carbon supported PtRu catalyst for methanol oxidation reaction and a PtSn catalyst for ethanol oxidation reaction have been synthesized successfully. Furthermore, a methanol tolerant Pd-based catalyst for cathode oxygen reduction reaction has been developed. HRTEM and HR-EDS have been employed to characterize the microstructure and micro-components of the above electrocatalysts. Results show that the bimetallic electrocatalysts prepared by the modified EG method display uniform size and homogeneous components at nanometer scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.