80 resultados para Auger


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cu-Zr amorphous alloy was studied as an electrocatalyst towards the electrochemical hydrogenation of nitrobenzene. The electrocatalyst was activated by chemical etching in HF solution. Resulted changes in the morphology, chemical composition and crystalline structure of the electrocatalyst surface were characterised by scanning electron microscopy, X-ray diffraction and Auger electron spectroscopy. The electrocatalytic properties of the Cu-Zr amorphous alloy were assessed by voltammetric measurements. Due to the formation and aggregation of Zr residue modified Cu nanocrystals on the surface caused by the selective dissolution of Zr components in the chemical etching, the activated amorphous alloy is an effective electrocatalyst for the electrochemical reduction reaction of nitrobenzene with aniline as the main product. The positive shift of the peak potential and accompanying increase in the value of peak current in voltammograms with increasing Cu content and decreasing Zr content of the alloy surface in the chemical etching are indicative of improved electrocatalytic activity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为揭示本氏针茅(Stipa bungeana Trin.)群落的生理生态适应机制,采用根系取样器(Φ=9 cm)对宁夏云雾山本氏针茅群落根系分布特征和土壤含水量进行研究。结果表明:本氏针茅群落地下生物量、根长密度、根表面积、比根长均随土壤深度增加而减少,均表现出向表层(0~20 cm)集聚的趋势,且集中分布于0~40 cm土层,最大值均分布在0~20 cm土层,而底层(80~100 cm)最小;所有主要根系分布参数在0~20 cm和20~40 cm土层之间差异显著,以下各层差异不显著;土壤含水量与根生物量和比根长相关性达显著水平(P<0.05),与根表面积、根长密度均呈成正相关;根表面积、根生物量、根长密度和比根长间相关性均达极显著水平(P<0.01)。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The difference in the electrochemical behavior of hydroquinone and pyrocatechol. at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and. electron transfer of redox species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface structure of the glassy carbon surface modified with cobalt tetraphenyl-porphyrin (CoTPP) by thermal-treatment has been studied by XPS, DTA and TG. During the thermal treatment a bond can be formed between the glassy carbon surface and TPP. Therefore the stability of electrode for the catalysis of dioxygen reduction is improved. Upon thermal treatment at 600 degrees C, FWHM of Co(2p(2/2)) is broadened, the reason is due to overlapping of peaks of multiple states, the spin orbit separation between Co (2p(1/2)) and Co (2p(3/2)) increases to 15.5-16.3eV, which indicated a change from low spin divalent states, the kinetic energy of Co L3VV Auger line and Auger parameter also increase. These changes of central cobalt ion provide a suitable redox potential for Co(III)/Co(II) which is related to the activity for catalysis of dioxygen reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and properties of Sm overlayer and Sm/Rh surface alloy have been investigated with Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption spectroscopy (TDS). The growth of Sm on Rh(100) at room temperature (RT) appears following the Stranski-Krastanov growth mode and only the trivalent state Sm is observed from XPS results. Thermal treatment of the Sm film at 900 K leads to the formation of ordered surface alloy which shows the c(5 root2 x root2)R45 degrees and c(2 x 2) LEED patterns. Annealing the Sm film at temperature above 400 K makes the binding energy (B.E.) of Sm 3d(5/2) shift to higher energy by 0.7 eV, which indicates charge transfer from Sm to Rh(100) substrate, causing the increase of CO desorption temperature.