112 resultados para Arc-melting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origins of the single- and double-melting endotherms of isotactic polypropylene crystallized at different temperatures were studied carefully by differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering. The experimental data show that spontaneous crystallization occurs when the crystallization temperature is lower than 117 degrees C; thus the lamellae formed are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae leads to double endotherms. On the other hand, when the crystallization temperature is higher than 136 degrees C, two major kinds of lamellae with different thickness are developed during the isothermal process, which also results in the double-melting endotherms. In the intermediate temperature range the lamellae formed are perfect, and there is only a single peak in the distribution of lamellar thickness. This explains the origin of the single-melting endotherm. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 similar to 1.2, probably reflecting one-dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization and melting behavior of mellocene-catalized branched and linear polyethylenes of low molecular weight was studied. It was found that the crystalline lattice of branched polyethylene is larger than that of linear polyethylene because of the existence of branched chains. The melting behavior of branched polyethylene is similar to that of linear polyethylene since the branched chains can not enter the lattice. However, the crystalline behavior of low molecular weight branched polyethylene is the same as that of high molecular weight linear polyethylene, but different with that of low molecular weigh linear polyethylene. Kinetics theory analysis evidenced that the transition temperature of growth regime of the branched polyethylene is about 20 degreesC lower than that of linear polyethylene with the same molecular weight. It may be attributed to the existence of short branched chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are sigma = 9.77 erg/cm(2) and sigma (e) = 155.48 erg/cm(2), respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent (n) over bar was determined to be 3.45. The activation energies (DeltaE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(P-hydroxybutyrate) (PHB)-poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB-PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB-PVAc blends very well. The double-melting phenomenon is found to be caused by crystallization during heating in DSC. (C) 1999 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal crystallization and melting behavior of nylon 66 and its blends with poly(ether imide) (PEI) were investigated by differential scanning calorimetry. Crystallization kinetics such as overall rate constant Z and index n were calculated according to Avrami approach. Crystallization in the blend was retarded with respect to that of pure nylon 66 by incorporation of PEI with high glass transition temperature (T-g). The lowest growth rate of the spherulites was observed in the blends containing 10 and 15 wt% fraction of PEI. A transition temperature where positively birefringent spherulites disappear and negative birefringent spherulites develop was measured by thermal analysis. The transition temperature increased with content of PEI in the blends. A suitable range of isothermally crystallization temperatures, 238.5-246 degrees C, is suggested For determining the equilibrium melting points by means of Hoffman-Weeks approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During heating of semicrystalline PET, a metastable melt forms far below the equilibrium melting temperature. Crystallization kinetics of this metastable melt is discussed on the basis of DSC results. From the metastable melt almost one-dimensional growth of the crystal occurs through heterogeneous nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A digital image analysis(DIA) technique can be applied directly to the image obtained by polarizing microscope. The time-resolved DIA apparatus including image collecting, showing and data analysis has been home-made. As an example, it has been used to study the banded spherulite in the blends of poly(epsilon-caprolactone) (PCL) and poly(styrene-ran-acrylonitrile) (SAN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ether ether ketone)/poly(ether diphenyl ether ketone) blend containing 30 wt% PEDEK was used to investigate the melting behaviour of immiscible PEEK/PEDEK blends. The results measured from differential scanning calorimetry (d.s.c.) and wide-angle X-ray diffraction (WAXD) showed that immiscible PEEK/PEDEK blends isothermally crystallized at a temperature between Tg and Tm-2 (PEEK's normal melting point) from the glassy state also exhibited the multi-melting behaviour like poly(aryl ether ketones) homopolymers. In addition, the low-temperature melting peak was independent of composition of poly(aryl ether ketones) blends and only associated with the thermal history. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonisothermal crystallization behavior and melting process of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide) (PEG) diblock copolymer in which the weight fraction of the PCL block is 0.80 has been studied by using differential scanning calorimetry (DSC). Only the PCL block is crystallizable, the PEO block with 0.20 weight fraction cannot crystallize. The kinetics of the PCL/PEO diblock copolymer under nonisothermal crystallization conditions has been analyzed by Ozawa's equation. The experimental data shows no agreement with Ozawa's theoretical predictions in the whole crystallization process, especially in the later stage. A parameter, kinetic crystallinity, is used to characterize the crystallizability of the PCL/PEO diblock copolymer. The amorphous and microphase separating PEO block has a great influence on the crystallization of the PCL block. It bonds chemically with the PCL block, reduces crystallization entropy, and provides nucleating sites for the PCL block crystallization. The existence of the PEO block leads to the occurrence of the two melting peaks of the PCL/PEO diblock copolymer during melting process after nonisothermal crystallization. The comparison of nonisothermal crystallization of the PCL/PEO diblock copolymer, PCL/PEO blend, and PCL and PEO homopolymers has been made. It showed a lower crystallinity of the PCL/PEO diblock copolymer than that of others and a faster crystallization rate of the PCL/PEO diblock copolymer than that of the PCL homopolymer, but a slower crystallization rate than that of the PCL/PEO blend. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ether diphenyl ether ketone) (PEDEK) synthesized by the nucleophilic route has the following chemical structure: [GRAPHICS] At some given temperatures for a given time isothermally crystallized PEDEK sample exhibits two endothermic peaks which are similar to PEEK and PEEKK The melting behavior of PEDEK crystallized from the glassy state is investigated through differential scanning calorimeter (DSC). We consider that the high-melting peak is related to the perfect crystals and the low-melting peak is associated with a few imperfect crystals. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melting of the nascent state nylon 1010 samples melt condensation polymerized with different M(eta) have been studied by DSC. The relations of melting point, content of higher order crystal with M(eta) are similar, the plots like a peak, at M(eta)=1.48x10(4) have the maximum. The melting heat, melting entropy and crystallinity are decreased gradually with M(eta) increasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isothermal crystallization and melting behavior of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide)(PEO) diblock copolymer has been studied by WAXD, SAXS, and DSC methods. Only the PCL block is crystallizable; the PEO block of weight fraction 20% cannot crystallize, although its corresponding homopolymer has strong crystallizability. The long period, amorphous layer, and crystalline lamella of the PCL/PEO block copolymer all increase with the rise in the crystallization temperature, and the thickness of the amorphous layer is much larger than that of crystalline lamella due to the existence of the PEO block in the amorphous region. The isothermal crystallization of the PCL/PEO block copolymer is investigated by using the theory of Turnbull and Fischer. It is found that the amorphous PEO block has a great influence on the nucleation of PCL block crystallization, and the extent of this influence depends on crystallization conditions, especially temperature. The outstanding characteristics are the phenomenon of the double melting peaks in the melting process of the PCL/PEO block copolymer after isothermal crystallization at different temperatures and the transformation of melting peaks from double peaks to a single peak with variations in the crystallization condition. They are related mainly to the existence of the PEO block bonding chemically with the PCL block. In summing up results of investigations into the crystallization and melting behavior of the PCL/PEO block copolymer, it is interesting to notice that when the PCL/PEO block copolymer crystallizes at three different crystallization temperatures, i.e., below 0 degrees C, between 0 and 35 degrees C, and above 35 degrees C, the variation of peak melting temperature is similar to that of overall crystallization rates in the process of isothermal crystallization. The results can be elucidated by the effect of the PEO block on the crystallization of the PCL block, especially its nucleation. (C) 1996 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melting behavior of drawn, compression-molded isotactic polypropylene has been examined in terms of the influence of drawing conditions on the observed properties. Two endothermic peaks were observed on differential scanning calorimetry (DSC) for samples when high draw ratios and high heating rates were used during DSC tests. The peak at lower temperature is influenced by draw ratio, temperature, and rate, and exhibits a strong superheating effect. The species associated with this peak can partially recrystallize into another species associated with the peak at higher temperature during DSC measurements. The position of the peak at higher temperature depends only on draw ratio. It is proposed that the double-melting peaks at lower and higher temperature result from extremely thin quasi-amorphous or crystalline layers between microfibrils and the lamellar crystals within microfibrils, respectively. (C) 1993 John Wiley & Sons, Inc.