163 resultados para Algal biofuels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A site investigation was conducted to correlate the relationships between microcystins (MC) concentration and algal growth in Dianchi Lake in China. Laboratory experiments were undertaken to test the effects of sediment adsorption, photoirradiation and biodegradation on microcystins removal. Bioaccumulation of microcystins was also determined using silver carp fish. It was observed that MC concentrations varied in accordance with algae growth in Dianchi Lake. The results obtained in the laboratory demonstrated that the removal of MC with fresh sediments was less than 10%, photoirradiation removed more than 75% MC within two hours, and the biodegradation needed much longer time to produce substantial degradation of MC. The results suggest that bioaccumulation of microcystins in fish was not significant in Dianchi Lake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to investigate the possible impacts of increased atmospheric CO2 levels on algal growth and photosynthesis, the influence of CO2 concentration was tested on three planktonic algae (Chlamydomonas reinhardtii, Chlorella pyrenoidosa, and Scenedesmus obliquus). Increased CO2 concentration enhanced significantly the growth rate of all three species. Specific growth rates reached maximal values at 30, 100, and 60 muM CO2 in C. reinhardtii, C pyrenoidosa, and S. obliquus, respectively. Such significant enhancement of growth rate with enriched CO2 was also confirmed at different levels of inorganic N and P, being more profound at limiting levels of N in C pyrenoidosa and P in S. obliquus. The maximal rates of net photosynthesis, photosynthetic efficiency and light-saturating point increased significantly (p<0.05) in high-CO2-grown cells. Elevation of the CO2 levels in cultures enhanced the photoinhibition of C. reinhardtii, but reduced that of C pyrenoidosa and S. obliquus when exposed to high photon flux density. The photo-inhibited cells recovered to some extent (from 71% to 99%) when placed under dim light or in darkness, with better recovery in high-CO2-grown C. pyrenoidosa and S. obliquus. Although pH and pCO(2) effects cannot be distinguished from this study, it can be concluded that increased CO2 concentrations with decreased pH could affect the growth rate and photosynthetic physiology of C. reinhardtii, C. pyrenoidosa, and S. obliquus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrodynamic properties of five newly isolated algal extracellular polysaccharides with putative adhesive properties are described, using a combination of size exclusion chromatography, total or 'multi-angle' laser light scattering and analytical ultracentrifugation. The respective polysaccharides had been extracted from four filamentous cyanobacteria: Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green. algae Desmococcus olivaceus that had been separated from desert algal crusts of the Chinese Tegger Desert. SEC/MALLS experiments showed that the saccharides had, diverse-weight average molecular weights ranging from 4000 to 250,000 g/mol and all five showed either bi-modal or tri-modal molecular weight distribution profiles. Use of the Mark-Houwink-Kuhn-Sakurada (MHKS) scaling relationship between sedimentation coefficient and (weight average) molecular weight for the five samples, assuming a homologous conformation series revealed an MHKS b exponent of (0.33 +/- 0.04), suggesting a conformation between that of a stiff rod (b similar to 0.18) and a random coil (b similar to 0.4-0.5), i.e. a 'flexible rod' or 'stiff coil'. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular polymeric substances (EPS) from four filamentous cyanobacteria Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green alga Desmococcus olivaceus that had been separated from desert algal crusts of Tegger desert of China, were investigated for their chemical composition, structure,and physical properties. The EPS contained 7.5-50.3% protein (in polymers ranging from 14 to more than 200 kD, SDS-PAGE) and 16.2-46.5% carbohydrate (110-460 kD, GFC). 6-12 kinds of monosaccharides, including 2-O-methyl rhamnose, 2-O-methyl glucose, and N-acetyl glucosamine were found. The main carbohydrate chains from M. vaginatus and S. javanicum consisted mainly of equal proportion of Man, Gal and Glc, that from P. tenue consisted mainly of arabinose, glucose and rhamnose. Arabinose was present in pyranose form, mainly alpha-L 1 --> 3 linked, with branches on C4 of almost half of the units. Glucose was responsible for the terminal units, in addition of having some units as beta1 --> 3 and some as beta1 --> 4 linked. Rhamnose was mainly 1 --> 3 linked with branches on C2 on half of the units. The carbohydrate polymer from D. olivaceus was composed mainly of beta1 --> 4 linked xylose, galactose and glucose. The galactose part was present both in beta-pyranose and -furanose forms. Arabinose in alpha-L-furanose form was mainly present as 1 --> 2 and 1 --> 2, 5 linked units, rhamnose only as alpha 1 --> 3 and xylose as beta 1 --> 4. The backbone of the polysaccharide from Nostoc sp. was composed of beta-1 --> 4 linked xylose, galactose and glucose. Most of the glucose was branched on position C6, terminal glucose and 2-O-methyl glucose units are also present. The relationship between structure, physical properties and potential biological function is discussed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m(-2), and lake water ( containing ca. 190 g m(-2) of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21-56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the ( bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To clarify the possible influence of Microcystis blooms on the exchange of phosphorus (P) between sediment and lake water, an enclosure experiment was conducted in the hypereutrophic subtropical Lake Donghu during July-September 2000. Eight enclosures were used: six received sediment while two were sediment-free. In mid-August, Microcystis blooms developed in all the enclosures. There was a persistent coincidence between the occurrence of Microcystis blooms and the increase of both total P (TP) and soluble reactive P (SRP) concentrations in the water of the enclosures with sediments. In sediment-free enclosures, TP and SRP concentrations remained rather stable throughout the experiment, in spite of the appearance of Microcystis blooms. The results indicate that Microcystis blooms induced massive release of P from the sediment, perhaps mediated by high pH caused by intense algal photosynthesis, and/or depressed concentrations of nitrate nitrogen (NO3-N). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diurnal photosynthesis of Nostoc flagelliforme was investigated at varied levels of CO2 concentrations and desiccation in order to estimate the effects of enriched CO2 and watering on its daily production. Photosynthetic activity was closely correlated with the desiccated status of the algal mats, increased immediately after watering, reached a maximum at moderate water loss, and then declined with further desiccation. Increased CO2 concentration enhanced the diurnal photosynthesis and raised the daily production. Watering twice per day enhanced the daily production due to prolonged period of active photosynthesis. The values of daily net production were 1321280 mumol CO2 g (d. wt)(-1) d(-1), corresponding to about 0.6-6.1% daily increase in dry weight. High-CO2-grown mats required higher levels of photon flux density to saturate the alga's photosynthesis in air. Air-grown mats showed higher photosynthetic affinity for CO2 and higher levels of dark respiration compared with high-CO2-grown samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and V-max of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The V-max values in sediment increased during the summer, in Conjunction with lower K-m values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher V-max in sediments plus lower K-m values in interstitial water, in Summer. In summary, a focus On phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared the nutrient dynamics of three lakes that have been heavily influenced by point and non-point source pollution and other human activities. The lakes, located in Japan (Lake Kasumigaura), People's Republic of China (Lake Donghu), and the USA (Lake Okeechobee), all are relatively large(>30 km(2)), very shallow (<4 m mean depth), and eutrophic. In all three lakes we found strong interactions among the sediments, water column, and human activities. Important processes affecting nutrient dynamics included nitrogen fixation, light limitation due to resuspended sediments, and intense grazing on algae by cultured fish. As a result of these complex interactions, simple empirical models developed to predict in-lake responses of total phosphorus and algal biomass to external nutrient loads must be used with caution. While published models may provide 'good' results, in terms of model output matching actual data, this may not be due to accurate representation of lake processes in the models. The variable nutrient dynamics that we observed among the three study lakes appears to be typical for shallow lake systems. This indicates that a greater reliance on lake-specific research may be required for effective management, and a lesser role of inter-lake generalization than is possible for deeper, dimictic lake systems. Furthermore, accurate predictions of management impacts in shallow eutrophic lakes may require the use of relatively complex deterministic modeling tools. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. We conducted enclosure experiments in a shallow eutrophic lake, in which a biomass gradient of the filter-feeding planktivore, silver carp, Hypophthalmichthys molitrix Valenciennes, was created, and subsequent community changes in both zooplankton and phytoplankton were examined. 2. During a summer experiment, a bloom of Anabaena flos-aquae developed (approximate to 8000 cells mL(-1)) solely in an enclosure without silver carp. Concurrent with, or slightly preceding the Anabaena bloom, the number of rotifer species and their abundance increased from seven to twelve species (1700-14 400 organisms L-1) after the bloom in this fish-free enclosure. Protozoans and bacteria were generally insensitive to the gradient of silver carp biomass. 3. During an autumn experiment, on the other hand, large herbivorous crustaceans were more efficient than silver carp in suppressing the algae, partly because the lower water temperature (approximate to 24 degrees C) inhibited active feeding of this warm-water fish and also formation of algal colonies. Heterotrophic nanoflagellate and bacterial densities were also influenced negatively by the crustaceans. 4. Correspondence analysis (CA) was applied to the weekly community data of zooplankton and phytoplankton. A major effect detected in the zooplankton community was the presence/absence of silver carp rather than the biomass of silver carp, whereas that in the phytoplankton community was the fish biomass before the Anabaena bloom, but shifted to the presence/absence of the fish after the bloom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The digestibility of algae by stomachless filter-feeding fish has been debated for decades. Results from gut contents and digestive enzyme analysis suggest poor utilization, while the measurement of food assimilation using radiolabeled isotope techniques indicate reasonable assimilation efficiency. Phytoplankton in the gut contents of the planktivorous filter-feeding silver carp were studied during March-May. The fish were cultured in a large net cage in a shallow, hypertrophic subtropical Chinese lake, Lake Donghu. In terms of biomass, the dominant phytoplankton in the fore-gut contents were Cyclotella (average 77.8%, range 69.7-93.5%) and Cryptomonas (average 9.57%, range 0-20.4%). The Ivlev's electivity index E of silver carp was much higher for Cyclotella (1.54) than for Cryptomonas (0.56). The majority of the phytoplankton found in the intestines of silver carp were 8-20 mu m, but they were also able to collect particles as small as 4.5-10 mu m, smaller than their filtering net meshes, suggesting that the secretion of mucus may play an important role in collecting such small particles. We conclude that disruption of cell walls is principally by the pharyngeal teeth, explaining previous contradictory conclusions. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clinorotation experiments were established to simulate microgravity on ground. It was found that there were obvious changes of Dunaliella salina FACHB435 cells and their metabolic characteristics during clinorotation. The changes included the increases of glycerol content, the rate of H+ secretion and PM H+-ATPase activity, and the decrease of ratio of the plasma membrane (PM) phospholipid to PM protein. These results indicated that microgravity was a stress environment to Dunaliella salina. It is deduced that it would be possible to attribute the effect of microgravity on algal cells to the secondary activation of water stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seasonal dynamics in the nutrient concentrations, chlorophyll-a amount (Chl-a), total algal volume (CV), Chl-a/CV ratio, seston structure were studied at two sampling stations in a shallow, highly eutrophicated subtropic lake (the Guozheng Hu area of the East Lake) on the plain of the middle basin of the Chang Jiang (the Yangtze River) of China. The lake ecosystem of the Guozheng Hu area is dominated by two planktivorous fishes (silver carp and bighead carp), phytoplankton and zooplankton. Macrophytes are extremely scarce in this area. Concentrations of the total dissolved nitrogen and phosphorus in the Guozheng Hu area in 1990 were very high. Fish yield, of which, more than 90 % was composed of silver carp and bighead carp in the Guozheng Hu area was very high (ca. 1140 kg/ha or 45.6 g/m3 in 1990). Grazing pressure by the fishes on the plankton community is considered to be rather strong. The annual average biomass of zooplankton was ca. 1/3 - 1/2 that of phytoplankton. On the average, dry matter in the living plankton only constituted ca. 3-7 % of the total dry seston, and plankton carbon only constituted ca. 5 - 10 % of the seston carbon. The present results indicate that, in the Guozheng Hu area of the East Lake, of the organic part of the seston, detritus is quantitatively an important constituent, while living plankton is only a very small component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative compositions of bacterioplankton, phytoplankton, zooplankton and detritus of seston were studied during the course of inundation in a floodplain lake of central Changjiang (China). Peaks in bacterial biomass developed shortly after flooding, coinciding with the initial leaching of organic nutrients from vegetation submerged under floodwater, and again at high water, shortly before the climax of phytoplankton biomass. Rods predominated the bacterial carbon biomass. Phytoplankton developed a postflood bloom at initial falling, corresponding to the drainage of the lake water into the river. While minimal biomass occurred during the advent of flooding, most likely due to disturbance and dilution. Algal biomass was usually dominated by Chlorophyta. Highest biomass of zooplankton was recorded at the end of the flooding in connection with the decline in turbidity, and once again at early drainage, closely associated with high phytoplankton biomass. Copepods (mainly nauplii) always constituted the majority of zooplankton carbon biomass. Peaks in detrital carbon concentrations were recorded at rising and falling water phases, corresponding respectively to the riverine discharge and decomposition of macrophyte mats. At rising water phase, CPOC was abundant. While during other water phases, this predominance was shifted to FPOC alone. Taken together, average contribution of bacterioplankton, phytoplankton, zooplankton and detritus to total seston carbon was 3.29, 21.21, 6.83 and 68.67 %, respectively.