124 resultados para Ab initio simulations
Resumo:
We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.
Resumo:
We have used ab initio pseudopotential method to generate basis wavefunctions and eigen energies to carry out first principle calculations of the static macroscopic dielectric constant for GaAs and GaP. The resulted converged random phase approximation (RPA) value is 12.55 and 10.71, in excellent agreement to the experimental value of 12.4 and 10.86, respectively. The inclusion of the exchange correlation contribution makes the calculated result slightly worsen. A convergence test with respect to the number of k points in Brillouin zone (BZ) integration was carried out. Sixty irreducible BZ k points were used to achieve the converged results. Integration with only 10 special k points increased the RPA value by 15%.
Resumo:
We have applied the Green-function method in the GW approximation to calculate quasiparticle energies for the semiconductors GaP and GaAs. Good agreement between the calculated excitation energies and the experimental results was achieved. We obtained calculated direct band gaps of GaP and GaAs of 2.93 and 1.42 eV, respectively, in comparison with the experimental values of 2.90 and 1.52 eV, respectively. An ab initio pseudopotential method has been used to generate basis wave functions and charge densities for calculating the dielectric matrix elements and self-enegies. To evaluate the dynamical effects of the screened interaction, the generalized-plasma-pole model has been utilized to extend the dielectric matrix elements from static results to finite frequencies. We presen the calculated quasiparticle energies at various high-symmetry points of the Brillouin zone and compare them with the experimental results and other calculations.
Resumo:
We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.
Resumo:
To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.
Resumo:
The surface structures of the Si(113)-(1 X 1), Si(113)-(3 X 1) and Si(113)-(3 X 2) have been studied theoretically by means of an ab initio quantum chemical CNDO method. We address not only the importance of the surface energy but also the energy minimization and the barrier height in the different structural conversion. We found that (1) the relaxed Si(113)-(1 X 1) structure. (2) the Si(113)-(3 X 1) close to the Si(113) Ranke (3 X 1)-2 model; (3) the atomic positions of Si(113)-(3 X 2) corrugated arrangement. (C) 1997 Elsevier Science B.V.
Resumo:
Photoluminescence (PL) was investigated in undoped GaN from 4.8 K to room temperature. The 4.8 K spectra exhibited recombinations of free exciton, donor-acceptor pair (DAP), blue and yellow bands (Ybs). The blue band (BB) was also identified to be a DAP recombination. The YB was assigned to a recombination from deep levels. The energy-dispersive X-ray spectroscopy show that C and O are the main residual impurities in undoped GaN and that C concentration is lower in the epilayers with the stronger BB. The electronic structures of native defects, C and O impurities, and their complexes were calculated using ab initio local-density-functional (LDF) methods with linear muffin-tin-orbital and 72-atomic supercell. The theoretical analyses suggest that the electron transitions from O-N states to C-N and to V-Ga states are responsible for DAP and the BB, respectively, and the electron transitions between the inner levels of the C-N-O-N complex may be responsible for the YB in our samples. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Highly differential experimental results of the scattering system He++ on He at 30 keV are presented as well as a complete unified theoretical description where excitation, transfer and ionization are treated simultaneously on an ab initio level. The agreement even for highly differential cross sections is nearly complete although no explicit correlation besides Pauli correlation is included in the calculations.
Resumo:
The dissociation and isomerization reaction mechanism on the ground-state potential energy surface for CH2ClI are investigated by ab initio calculations. It is found that the isomer iso-CH2I-Cl can be produced from either the recombination of the photodissociation. fragments or the isomerization reaction of CH2ClI, rather than from isomerization reaction of iso-CH2Cl-I. Further explanations of experimental results are also presented. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The equilibrium properties and potential energy curves of the ground electronic state of CaF have been calculated using the Brueckner Doubles calculation with a triples contribution added [BD(T)] and the gradient-corrected density functional theory with three-parameter exact exchange mixing (B3LY-P) method, with 6-311 + G*,6-311 + G(2df,2pd) and 6-311 + G(3df,3pd) basis sets. All the computational PECs are fitted to analytical potential energy functions using Murrell-Sorbie, Huxley and Tang-Toennies potentials. Based on this, the spectroscopic parameters are calculated, and then compared with some other theoretical and experimental data. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structures, properties and electron transfer reactivity of the ClO/ClO+ coupling system are studied in this paper at ab initio (HF and MP2) levels and the density functional theory (DFT: B3LYP, B3P86, B3PW91) levels employing 6311 + G(3df) basis set and on the basis of the golden-rule of the time-dependent perturbation theory. Investigations indicate that the results got from the B3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated by using the B3LYP/6-311 + G(3df) method, and then the electron transfer rates are determined at this level. The electronic coupling matrix element of EC.6 is very small, only 0.03 kcal/mol, while that of EC.7 is the biggest, being 12.41 kcal/mol, the corresponding electron transfer rate is also the fastest among these seven encounter complexes. The averaged electron transfer rate is about 1.672 X 10(11) M-1 s(-1). It is indicated that the structures optimized by B3LYP method are more reliable than the results got from the other four methods. It also testified that the electronic coupling matrix element is the vital factor that significantly affects the electron transfer rate. (C) 2003 Elsevier B.V. All rights reserved.