107 resultados para ANTIOXIDANT ENZYME-ACTIVITIES
Resumo:
Objective To investigate the hispathological characteristics and antioxidant responses in liver of silver carp after intraperitoneal administration of microcystins (MCs) for further understanding hepatic intoxication and antioxidation mechanism in fish. Methods Phytoplanktivorous silver carp was injected intraperitoneally (i.p.) with extracted hepatotoxic microcystins (mainly MC-RR and -LR) at a dose of 1000 mu g MC-LReq./kg body weight, and liver histopathological changes and antioxidant responses were studied at 1, 3, 12, 24, and 48 h, respectively, after injection. Results The damage to liver structure and the activities of hepatic antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxide (GPX) were increased in a time-dependent manner. Conclusion In terms of clinical and histological signs of intoxication and LD50 (i.p.) dose of MC-LR, silver carp appears rather resistant to MCs exposure than other fishes. Also, the significantly increased SOD activity in the liver of silver carp suggests a higher degree of response to MCs exposure than CAT and GPX.
Resumo:
The effects of beta-glucan, an immunostimulatory agent, on the superoxide dismutase (SOD) and catalase (CAT) activities of erythrocytes and Mx gene expression were studied from grass carp that were challenged with grass carp hemorrhage virus (GCHV). The SOD and CAT activities in erythrocytes and Mx gene expression in spleen from the fish were detected by spectrophotometry and RT-PCR, respectively. Negative control fish were injected with PBS; positive control groups were injected with either P-glucan or GCHV only; and the experimental groups were pre-injected with beta-glucan 15 days prior to injection with GCHV. The results show that the SOD and CAT activities were higher in fish injected with beta-glucan for 15 days than the negative control group injected with PBS. The SOD and CATactivities significantly decreased when the fish were challenged with GCHV, but it was higher in the group pre-treated with beta-glucan than in infected fish not pre-treated, 15 days after GCHV infection. Mx gene expression levels increased during the early stages (at 12 h and 36 h) of GCHV infection, and it remained at higher levels from the 6th till the 10th day in the beta-glucan pre-treated group, but it was failing from the 6th day in the beta-glucan untreated group. The GCHV-infected group pre-treated with P-glucan had a higher survival rate (60%) than the group not pre-treated with P-glucan (20%), suggesting that beta-glucan possesses or enhances anti-viral responses. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Pyrogallol is a potent allelochemical on Microcystis aeruginosa, but its allelopathic mechanism is not fully known. In order to explore this mechanism, gene expressions for prx, mcyB, psbA, recA, grpE, fabZ under pyrogallol stress were studied, and activities of the main antioxidant enzymes were also measured. The results showed that expression of grpE and recA showed no significant change under pyrogallol stress, while psbA and mcyB were up-regulated at 4 mg L-1. Both prx and fabZ were up-regulated even under exposure to 1 mg L-1 pyrogallol concentration. The activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced under pyrogallol stress. Levels of malodialdehyde (MDA) at 2 and 4 mg L-1 pyrogallol were significantly higher than those of the controls. It was concluded that oxidant damage is an important mechanism for the allelopathic effect of pyrogallol on M. aeruginosa. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD(50) (14 mu g MC-LReq kg(-1) body weight) and 1LD(50) (87 mu g MC-LReq kg(-1) body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD(50) dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD(50) not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously. complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
In this study, we found that UV-B radiation decreased photosynthetic activity and boosted lipid peroxidation of desert Nostoc sp., and exogenous chemicals (ascorbate acid (ASC), N-acetylcysteine (NAC), and sodium nitroprusside (SNP)) had obvious protective effects on photosynthesis and membranes under UV-B radiation. High-concentration SNP boosted the activities of antioxidant enzymes, but low-concentration SNP reduced the activities of antioxidant enzymes. Both NAC and ASC treatments of cells decreased activities of antioxidant enzymes. The results suggested that those chemicals possibly had different mechanisms of protection of algae cells against UV-B radiation. SNP might play double roles as a signal molecule in the formation of algae cell protection of Photosystem 11 under UV-B radiation and as a (reactive oxygen species) scavenger, while NAC and ASC might function as antioxidant reagents or precursors of other antioxidant molecules, which could protect cells directly against ROS initiated by UV-B radiation. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Microcystins are a kind of cyclic hepatotoxins produced by many cyanobacterial species. Many works have been done concerning, the toxic effects of microcystins on animals and plants. However, the reports about their effects on microbial cells are very limited. In the present paper, Bacillus subtilis (B. subtilis) was used to determine the dose- and time-effect of microcystin-RR, and the results showed that the activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) was significantly increased to that of control, when exposed to 5 or 10 mu g/ml microcystin-RR for 1 h. The contents of thiobarbituric acid-reactive sub-stances (TBARS) and glutathione (GSH) as well as glu-tathione reductase (GR) activity were obviously increased only when exposed to 10 mu g/ml microcystin-RR. For the time-effect of microcystin-RR on B. subtilis, the activities of antioxidant enzymes including SOD and CAT as well as GR activity and TBARS, GSH contents in B. subtilis were at first significantly increased, and then subsequently de-creased. These results suggested that microcystin-RR could induce the oxidative stress of B. subtilis for a short period. The antioxidant system protects B. subtilis from oxidative damage.
Resumo:
Perfluorochemicals (PFCs) are emerging persistent organic pollutants (POPs) and are widely present in the environment, wildlife and humans. Recently, reports have suggested that PFCs may have endocrine-disrupting activities. In the present study, we have developed a non-competitive enzyme-linked immunosorbent assay (ELISA) method to investigate estrogenic activities of selected PFCs using vitellogenin (VTG) induction in primary cultured hepatocytes of freshwater male tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to various concentrations of perfluorooctanyl sulfonate (PFOS), pentadecafluorooctanoic acid (PFOA), 1H, 1H, 2H, 2H-nonafluoro-1-hexanol (4:2 FTOH), 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH) and 1H, 1H, 2H, 2H-perfluoro-1-decanol (8:2 FTOH) for 48h, while 17 beta-estradiol (E2) and 4-nonylphenol (4-NP) were used as positive controls. A dose-dependent induction of VTG was observed in E2-, 4-NP-, PFOS-, PFOA- and 6:2 FrOH-treated cells, whereas VTG levels remained unchanged in the 4:2 FTOH and 8:2 FTOH exposure groups at the concentrations tested. The estimated 48-h EC50 values for E2,4-NP, PFOS, PFOA and 6:2 FTOH were 4.7 x 10(-7), 7.1 x 10(-6), 1.5 x 10(-5), 2.9 x 10(-5) and 2.8 x 10(-5) M, respectively. In the time-course study, significant VTG induction took place at 24 h (E2), 6 It (4-NP), 48 It (PFOS), 48 It (PFOA), 72 It (4:2 FTOH), 12 h (6:2 FTOH), 72 h (8:2 FTOH), and increased further after 96 It of exposure. Co-exposure to binary mixtures of individual PFCs and E2 for 48 It significantly inhibited E2-induced hepatocellular VTG production in a dose-dependent manner except for 4:2 FTOH. The estimated 48-h IC50 (concentration of a compound that elicits 50% inhibition of maximally E2-induced VTG) values for PFOS, PFOA, 6:2 FTOH and 8:2 FTOH were 3.1 x 10(-7), 5.1 X 10(-7), 1.1 X 10(-6) and 7.5 x 10(-7) M, respectively. In order to further investigate the estrogenic mechanism of PFCs, the hepatocytes were co-exposed to binary mixtures of individual chemicals (E2,4-NP, PFOS, PFOA and 6:2 FTOH) and the known estrogen receptor inhibitor tamoxifen for 48 h; tamoxifen significantly inhibited the ability of these chemicals to stimulate vitellogenesis. The overall results demonstrated that PFOS, PFOA and FTOHs have estrogenic activities and that exposure to a combination of E2 and PFCs produced anti-estrogenic effects. The results of the estrogen receptor inhibition assay further suggested that the estrogenic effect of PFCs may be mediated by the estrogen receptor pathway in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nostoc sphaeroides Kuetzing has been used as a traditional medicine in China to treat a variety of ailments. This research identified the antioxidant activities of polysaccharide extract from Nostoc sphaeroides. The extract, which contains 46.2% carbohydrates, exhibited an effective scavenging capability on superoxide radical, hydroxyl radicals in non site-specific as well as site-specific assays, and also performed lipid peroxidation inhibition in a dose-dependent manner. Polysaccharide extract had no 1,1-diphenyl-2-picrylhydrazyl radical scavenging potential at all test concentrations. Activities of superoxide dismutase, catalase, and glutathione peroxidase in human embryo kidney 293 cells were increased effectively when Nostoc sphaeroides extract was applied. These results suggested that the use of N. sphaeroides in treating ailments may be based on the antioxidant capacities of polysaccharide composition.
Resumo:
Hexachlorobenzene (HCB)-induced oxidative damages have been published in rats while the effects have not yet been reported in fishes. Juvenile common carps (Cyprinus carpio) were exposed to waterborne HCB from 2 to 200 mu g l(-1) for 5, 10 or 20 days. Liver and brain were analyzed for various parameters of oxidative stress. There were no significant changes of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver after 5 or 10 days exposure, whereas obvious drops were observed at higher concentrations after 20 days exposure. Significant decreases of GSH content and SOD activity in brain were found during all the exposure days. In brain, HCB also significantly elevated the contents of reactive oxygen species (ROS), thiobarbituric acid-reactive substances (TBARS, as an indicator of lipid peroxidation products), glutathione disulfide (GSSG), and activities of nitric oxide synthase (NOS), glutathione peroxidase (GPx), and glutathione reductase (GR), and inhibited activities of acetylcholinesterase (AchE) and glutathione S-transferase (GST). The results clearly demonstrated that environmentally possible level of HCB could result in oxidative stress in fish and brain was a sensitive target organ of HCB toxicity. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by many species of cyanobacteria. The toxic effects and mechanism of microcystins on animals have been well studied both in vivo and in vitro. It was also reported that microcystins had adverse effects on plants. However, to our knowledge, there is no information about the toxic effects and mechanism of microcystins on plant suspension cells. In this study, Arabidopsis thaliana suspension cells were exposed to a range dose of microcystin-RR. Lipid peroxidation, a main manifestation of oxidative damage, was studied and a time- and dose-dependent increase in malondiadehyde was observed. In contrast, glutathione (GSH) levels in the cells decreased after 48 h treatment with 1 and 5 mg/L of microcystin-RR. The activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after 48 h exposure to I and 5 mg/L of microcystin-RR, but glutathione S-transferase (GST) activity showed no difference compared with the control. These results clearly indicate that microcystin-RR is able to cause oxidative damage in A. thaliana suspension cells. Decrease of GSH content and increases of SOD and CAT activities reveal that the antioxidant system may play an important role in eliminating or alleviating the toxicity of microcystin-RR. The possible toxicity mechanism of microcystin-RR on the A. thaliana suspension cells is also discussed in this paper. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The bioaccumulation of phthalate acid esters (PAEs) from industrial products and their mutagenic action has been suggested to be a potential threat to human health. The effects of the most frequently identified PAE, Di-n-butyl phthalate (DBP), and its biodegradation, were examined by comparison of two small scale plots (SSP) of integrated vertical-flow constructed wetlands. The influent DBP concentration was 9.84 mg l(-1) in the treatment plot and the control plot received no DBP. Soil enzymatic activities of dehydrogenase, catalase, protease, phosphatase, urease, cellulase, beta-glucosidase, were measured in the two SSP after DBP application for 1 month and 2 months, and 1 month after the final application. Both treatment and control had significantly higher enzyme activity in the surface soil than in the subsurface soil (P < 0.001) and greater enzyme activity in the down-flow chamber than in the up-flow chamber (P < 0.05). In the constructed wetlands, DBP enhanced the activities of dehydrogenase, catalase, protease, phosphatase and inhibited the activities of urease, cellulase and beta-glucosidase. However, urease, cellulase, beta-glucosidase activities were restored 1 month following the final DBP addition. Degradation of DBP was greater in the surface soil and was reduced in sterile soil, indicating that this process may be mediated by aerobic microorgansims. DBP degradation fitted a first-order model, and the kinetic equation showed that the rate constant was 0.50 and 0.17 d(-1), the half-life was 1.39 and 4.02 d, and the r(2) was 0.99 and 0.98, in surface and subsurface soil, respectively. These results indicate that constructed wetlands are able to biodegrade organic PA-Es such as DBP. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins, one type of the cyanobacterial toxins, show a broad range of hazardous effects on other organisms. Most of the researches on the toxic effects of microcystins have involved in animals and higher plants. Little work, however, has been done on evaluating the mechanisms of microcystin toxicity on algae. In this study, the toxicological effects of microcystin-RR (MC-RR) on the cyanobacterium Synechococcus elongatus were investigated. For this purpose, six physio-biochemical parameters (cell optical density, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST)) were tested in algal cells when exposed to 100 mug(-1) microcystin-RR. The results showed that the growth of Synechococcus elongatus ( expressed as optical density) was significantly inhibited compared with the control. At the same time, the treated algae exhibited a pronounced increase in production of ROS and MDA after 6 days exposure to microcystin-RR. Signi. cant changes in GSH levels and GSH-Px, GSH activities were also detected in algal cells, with higher values being observed in the toxin treated algae after 6 days exposure. GST activities in the treated algae exhibited a decline after exposure and rapid augmentation on day 3, thereafter, they kept at a high level when compared to the control group. GSH contents and GSH-Px activities were also significantly raised in the toxin-treated algae cells from day 3, but they showed a sharp decrease on day 4, which was the onward of cell proliferation. These results suggested that oxidative stress manifested by elevated ROS levels and MDA contents might be responsible for the toxicity of microcystin to Synechococcus elongatus and the algal cells could improve their antioxidant ability through the enhancement of enzymatic and non-enzymatic preventive substances.
Resumo:
It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.