100 resultados para ALKYLPHOSPHINE OXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound BaCuO2.5 Was obtained using BaO2 and CuO as starting materials, and its various properties were investigated. It belongs to the orthorhombic system with a = 8.55 angstrom, b = 10.56 angstrom, and c = 7.62 angstrom. The p-type semiconductor Ba

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition and structures of Li-Ti-La mixed oxides as well as their catalytic activity for methane oxidative coupling have been studied by means of XRD XPS, IR, SEM and so on. The results indicate that by changing x value in Li-La1-xTixO2 oxides phas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of hydrophobic oxide, containing =Si-CH=CH2 groups, on the radiation crosslinking of low density polyethylene (LDPE) has been studied. It was found that mechanical stability of irradiated LDPE containing improved SiO2 is higher than that of samples containing unimproved SiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type of oxygen species in perovskite-type oxides LaMnyCo1-yO3 (y = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) has been studied by means of XRD, XPS and TPD. The catalytic activity in ammonia oxidation was also investigated. It was found that there were three desorption peaks in TPD curve corresponding to three types of oxygen species (alpha, beta, beta'). The desorption temperatures were 293 K less-than-or-equal-to T(alpha) less-than-or-equal-to 773 K, 773 K less-than-or-equal-to T(beta) less-than-or-equal-to K and T(beta') greater-than-or-equal-to 1073 K respectively. The relationship among the composition, structure and the catalytic property of.the catalyst was correlated and could be explainned with a model based on solid defect reaction and the interaction between Co and Mn ions. The adsorption strength and quantity of a oxygen are proportional to the catalytic activity. The, result indicates that the synergetic effect between B-site ions seems to the benefit of the ammonis oxidation reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is devoted to the studies on relationship of structure and activity of Sn-Mo oxides by using XRD, ESR, IR, XPS, TEM and SEM. Eight samples with Mo/(Mo + Sn) rations: 0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0 were prepared. On the basis of structure characterization, Sn-Mo oxides can be divided into three groups: Catalysts I with Mo/(Mo + So) less-than-or-equal-to 0.2, Catalysts II with 0.2 < Mo/(Mo + Sn) < 0.8, and catalysts III with Mo/(Mo + Sn) greater-than-or-equal-to 0.8. The solid solution of Mo5+ in tin oxide was formed and the cation vacancy was formed in catalysts I. The solid solution of Sn4+ in molybdenum oxide was formed in catalysts III. The lattice oxygen in catalysts III has higher mobility and reactivity than that in catalysts I. The catalysts III showed higher activity but lower selectivity than that of catalysts I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of reducible metal oxides as promoters shows a positive effect on the catalytic behavior of lanthanum vanadate (LaVO4). A C3H6 yield increase of 6.5% is observed at 500 degreesC on molybdenum-promoted LaVO4, which can be attributed to the change of the redox properties, the blocking of the strong oxidation sites of the catalysts and to an increase of the accessibility of the labile oxygen toward the reactant. The influence of the catalyst preparation method and of the Mo loading as well as the additional promoting effect of CO2 in the gas feed was also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO2-TPD was demonstrated an effective way to investigate the phase formation during pyrolysis for the preparation of composite oxides using metal-organic molecules as precursors. Based on the CO2-TPD results, it was found that calcination condition had deep effect on the carbonate formation and the minimum firing temperature to acquire pure phase composite oxide. An optimized calcination schedule was then developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.