107 resultados para ACIDITY
Resumo:
In this paper, a series of Sr1-xLaxNiAl11O19 catalysts were synthesized and their chemical and physical properties were investigated by XRD, UV-DRS, H-2-O-2 titration, TPR and Py-IR techniques. The experimental results show that the Sr1-xLaxNiAl11O19 catalysts have a magnetoplumbite structure and Ni ion is shared between tetrahedral and octahedral sites of the spinel blocks, and the amount of nickel ions in the tetrahedral environment increases with the increase of x value in Sr1-xLaxNiAl11O19. The TPR study revealed that the reducibility of the series of the catalysts depends strongly on the substitution value x, that is, a low temperature peak appears for samples without substitution, in case of samples with x = 1 high temperature peak appears, and for samples with 0
Resumo:
Solvent extraction of Ce(IV), Th(IV) with Cyanex 923 in n-hexane from sulphuric acid medium was studied with the dependence of the extraction on acidity and temperature being investigated. The Ce(IV) and Th(IV) extraction mechanism was proposed by slope analysis and the IR spectra of purified Cyanex 923 saturated with Ce(IV) were employed to determine the composition of the Ce(IV) complex. The equilibrium constant and thermodynamic functions of Th(IV) extraction were calculated and the characteristics of the stripping of Ce(IV), Th(IV) from the loaded organic phase were studied. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Catalysts consisting of heteropoly acids (HPAs) supported on different silica and mesoporous molecular sieves have been prepared by impregnation and the sol-gel method, respectively, and their catalytic behavior in fixed-bed alkylation of isobutane with butene has been investigated. The activity, selectivity and stability of the supported-HPA catalysts could be correlated with the surface acidity of the catalysts, the structure of supports as well as the time on stream (TOS). In the fixed-bed reactor, the acidity of the heteropoly acid is favorable to the formation of dimerization products (C-8(=)); especially, the pore size of supports was seen to have an important effect on activity and product distribution of the catalysts. Contrary to the traditional solid-acid catalysts, the supported-HPA catalysts own an excellent stability for alkylation, which makes it possible for these supported catalysts to replace the liquid-acid catalysts used in industry.
Resumo:
Extraction resins, of the type of;levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(III)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50 degrees C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%, Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%. The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.
Resumo:
The synergistic extraction of Sc(III) from H2SO4 solution with bis(2, 4, 4-trimethylpentyl)monothiophosphinic acid(HBTMPTP, HL) and branched chain alkyl phosphine oxide mixture (Cyanex 925, B) in n-hexane has been investigated, The results indicated that synergistic effect was showed in low acidity (c(H2SO4) < 0.25 mol/L). The composition of the extracted complex of Sc(III) has been determined to be Sc(HL2)(2)B-3(SO4)(1/2) by the method of slope analysis, The mechanism of the synergistic extraction of Sc(III) may be : Sc3+ + 2(HL)(2(O)) + 3B((O)) + 1/2SO(4)(2-)reversible arrow(K12)Sc(HL2)(2)B-3(SO4)(1/2(O)) + 2H(+) ScL(HL2)(2(O)) + 3B((O)) + H+ + 1/2SO(4)(2-)reversible arrow(beta')Sc(HL2)(2)B-3(SO4)(1/2(O)) + 1/2(HL)(2(O)) Sc(SO4)(1.5)B-2(O) + B-(O) + 2(HL)(2(O))reversible arrow(beta')Sc(HL2)(2)B-3(SO4)(1/2(O)) + 2H(+) + SO42- Their equilibrium constants have been calculated to be lgK(13)=6.77+/-0.12, lg beta'=7.71, lg beta '' = 0.10, respectively, The IR spectra and FAB-MS of the saturated synergistic extraction complex of Sc(III) have been discussed as well.
Resumo:
The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.
Resumo:
The solvent extraction of Sc(III), Zr(IV), Th(IV), Fe(III) and Lu(III) with Cyanex 302 (bis(2,4,4-trimethylpentyl)monothiophosphinic acid) and Cyanex 301 ( bis(2,4,4-trimethylpentyl) dithiophosphinic acid) in n-hexane from acidic aqueous solutions has been investigated systematically. The effect of equilibrium aqueous acidity on the extraction with these reagents was studied. The separation of Th(IV), Fe(III) and Lu(III) from Sc(III), or the separation of other metals from Lu(III) with Cyanex 302, can be achieved by controlling the aqueous acidity. However, Cyanex 301 exhibited a poor selectivity for the above metals, except for Lu(III). The extraction of these metals with Cyanex 272, Cyanex 302 and Cyanex 301 has been compared. The stripping percentages of Sc(III) for Cyanex 302 and Cyanex 301 in a single stage are near 78% and 75% with 3.5 mol/L and 5.8 mol/L sulphuric acid solutions, respectively. The effects of extractant concentration and temperature on the extraction of Sc(III) were investigated. The stoichiometry of the extraction of Sc(III) with Cyanex 302 was determined. The role of different components of Cyanex 302 in the extraction of Sc(III) was discussed.
Resumo:
Poly-o-methylaniline (poly-o-toluidine) was doped by some protonic acids. It was found that the acidity, molecular size and oxidizing ability of protonic acids affected the doping level and conductivity of polymer obtained to some extent. The organic acid
Resumo:
Quinine derivatives, quinine hydrochloride and 8-hydroxyquinoline, transfer across the water/nitrobenzene interface was studied by cyclic voltammetry. The effect of solution acidity on the transfer behaviour was observed. Transfer mechanism was discussed
Resumo:
The catalytic activity of heteropoly compounds in the oxidation of benzyl alcohol and cyclohexa nol under phase transfer conditions has been studied. The catalytic activity of six kinds of heteropoly acids with Keggin structure will drop by the order of GeMo12 (H4GeMo12O40). PW12, PMo12, SiMo12, GeW12 and SiW12. When the three protons of H3PW12O40 Were replaced by Na+ step by step, the catalytic activity will raise gradually with the drop of acidity. The addition of base and trace amount of sulfuric acid to the reaction system resulted in an increase of catalytic activity. It was found that catalytic activity of mono-lacunary heteropoly compounds is higher than that of the primary heteropoly acids (or salts). The catalytic oxidation system of HPA-H2O2-PTC is very active in the oxidation of benzyl alcohol ana cyclohexanol, but it has little activity in the oxidation of inactive compounds such as n(or iso)-proplalcohol. n-butyl alcohol and n-hexanol. Solvent has great effect on reaction, when polar compounds such as water were used as solvent, the catalytic activity is better than that when non-polar compounds were used as solvent.
Resumo:
The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.
Resumo:
In this paper the electrochemical properties of isopolymolybdic anion thin film modified carbon fibre (CF) microelectrode prepared by simple dip coating have been described. The modified electrode shows three couples of surface redox waves between + 0.70 and - 0.1 V vs. sce in 2 M H2SO4 solution with good stability and reversibility. The pH of solution has a marked effect on the electrochemical behaviour and stability of the film, the stronger the acidity of electrolyte solution is, the better the stability and reversibility of isopolymolybdic anion film CF microelectrode will be. The scanning potential range strongly influences on the electrochemical behaviour of the film. The isopolymolybdic anion film prepared by the dip coating resulting a monolayer with estimated surface concentration (F) 2.8 x 10(-11) mol cm-2. From the half-peak widths and peak areas of the surface redox waves of the film electrode, the first three surface waves are corresponding to two-electron processes. The electron energy spectra show the products by six electrons reduction are a mixture of Mo(VI) and Mo(V) species. The electrochemical reaction of the isopolymolybdic anion monolayer can be expressed as Mo8O264- + mH+ + 2ne half arrow right over half arrow left [HmMo8-2n(VI)Mo2n(V)O26](4,2n-m)-n = 1, 2, 3; m = 2, 5, 7.
Resumo:
The electrochemical polymerization of amino-derivatives of naphthalene has been studied on the platinum wire electrodes. The effects of acidity of the modifying media and the potential scan rate on the cyclic voltammograms are verified. As potentiometric pH sensors, the electrodes prepared from 1-naphthylamine and 2,3-diaminonaphthalene showed performance characteristics superior to some other electrodes tested. The electrode modified with 1-naphthylamine in the optimum medium showed a nearly Nernstian response of 4.20-13.70 pH and a slope of -54.8 mV/pH, while the linear range of the electrode prepared by 2,3-diaminonaphthalene was 4.00-13.60 pH, with a slope of -52.4 mV/pH.
Resumo:
In this paper, the reaction and structure of the complexes of alkaline earth metal (Ca, Sr, Ba) with 2-(4'-chloro-2'-phosphonazo)-7-(2', 6'-dibromo-4'-chlorophenylazo 1, 8-dihydroxy-3, 6-naphthalene disulfonic acid (Chlorophosphonazo-DBC) have been studied. This ligand has eight forms under different acidity. The protonation reactions take place at [H+] > 0.36 mol.dm-3. The ligand begins dissociations at pH > 0.5. Two protons are released in the complexes formation reactions(Me2+ + 2HI half-arrow-pointing-left and half-arrow-pointing-right MeL2 + 2H+). The stability constants of the complexes of Calcium, Strontium and Barium have been determined by Yoe-Jone method, Majumder-Chakrabartty method and calculation method. The order of the stability of complexes is as follows: Sr > Ba > Ca. The structure of the complexes have also been studied by infrared spectroscopy, Laser Raman spectroscopy, NMR, and EPR. The results show that these groups of N = N, PO3H2 and OH are active groups in the complex reactions. The structure of the complexes of Strontium, Barium and Calcium with chlorophosphonazo-DBC are represented and the reaction and the complex bonds are discussed in this paper.
Resumo:
The chemical polymerization of ortho-methylaniline (MAn) is performed in aqueous solution of six protonic acids. The MAn polymerization conversion, and the electrical conductivity and doping level as well as molecular chain structure of the polymers obtained depend not only on the acid concentration but also on their acidity and molecular size.