131 resultados para 514


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用能量为125140MeV的27Al束流,通过重离子核反应152Sm(27Al,5n) 研究了双奇核174Re的高自旋态能级结构。实验进行了射线的激发函数、X-和-符合测量。基于实验测量结果,拓展了174Re的能级纲图,纲图中包括五条转动带。本工作拓展了原有的三条转动带,并新发现了两条内禀组态分别为π9/2[514]⊗ν5/2[512]与π1/2[541]⊗ν5/2[512]的转动带。通过对实验数据的分析,建议了各能级的自旋、宇称,并对各转动带的内禀组态进行了指认。在二准粒子-转子模型的基础上,从邻近核各组态能级信息出发,估算了174Re的带头能量。建议π1/2[541]⊗ν5/2[512]为174Re基态的内禀组态。根据纲图中出现的转动带间交叉跃迁,在带混合理论基础上提取与分析了相关组态的相互作用强度与跃迁电四极矩比。用准粒子形状驱动效应解释了不同组态转动带间跃迁电四极矩的显著差别。最后,讨论了174Re中出现的旋称反转现象

Relevância:

10.00% 10.00%

Publicador:

Resumo:

主要介绍了一种高速宽带放大与峰值保持电路。该电路是根据束流位置监测系统的要求而研制的,是该系统的前端部分。主要包括放大电路和峰值保持电路两部分,其主要特点是采用直流耦合的方式对微弱快电压信号进行多级放大,使得信号在放大过程中不会产生附加相移,此外还采取差分放大的方式来有效地抑制直流耦合带来的直流漂移。电路带宽≥70MHz,增益≥700。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用在束核谱学实验技术,建立了169Re基于9/2-[514]组态的强耦合转动带.该带在已知的奇ARe核中具有最大的低自旋旋称劈列.对于奇ARe中的9/2-[514]转动带,研究了它们的能量旋称劈列和M1跃迁矩阵元相对旋称劈列与核形状偏离轴对称的关系,揭示了非常缺中子的奇ARe核具有相当的负三轴形变.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究了~(169)Re的高自旋态能级结构,建立了组态为π9/2~-[514]的强耦合带和组态为π1/2~-[541]的退耦合带,推转壳模型(Cranked shell model)计算结果表明组态相关的不同形变能够解释这些转动带的不同带交叉频率,在已知的奇ARe核中,~(169)Re的9/2~-[514]转动带在低自旋时具有最大的能量旋称劈裂,当一对i_(13/2)中子顺排后,旋称劈裂发生了反转,并且劈裂的幅度非常显著地减少了,另外,还观测到了一个三准粒子激发带,并指定了它的最可能组态为π9/2~-[514](?)νAE。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

能量为140 MeV的27Al束流轰击145Nd氧化靶,通过145Nd (27Al,4nγ)168Ta熔合蒸发反应对双奇核168Ta的高自旋态进行了实验研究。扩展了基于πh11/2(9/2-[514])νi13/2(5/2+[402])和πd5/2(5/2+[402])νi13/2(5/2+[642])准粒子组态下的转动带能级纲图。根据实验测量结果,对两转动带的准粒子顺排特征作了分析。通过B(M1)/B(E2)的理论与实验值比较以及168Ta相邻双奇核能级间隔系统性,进一步确定了两转动带的准粒子组态和能级的自旋宇称

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文主要进行了奇奇核~(166)Lu、~(168)Lu和奇中子核~(87)Zr的高自旋态的研究工作,对它们高自旋态的一些物理现象进行了讨论。并且首次对1/2~-[541](direct X)vi_(13/2)组态带的系统学规律进行了总结。主要由以下三个部分组成:~(166,168)Lu高自旋态的研究在最近有关形变奇奇核高自旋态的研究工作中,随着实验上π1/2-[541](direct X)vi_(13/2)带自旋的确定,人们发现除了130区的兀h_(11/2)(direct X)vh_(11/2)和160区的兀h_(11/2)(direct X)vi_(13/2)组态带低自旋旋称反转以外,π1/2~-[541](direct X)vi_(13/2)带的低自旋也是反转的,该转动带低自旋旋称反转现象引起了人们的很大的兴趣并得到很广泛的研究,为了通过π1/2~-[541](direct X)vi_(13/2)带与已知自旋和宇称的基态和一些低激发态相连,确定该转动带的自旋,人们付出了很大的努力。特别是最近几年,一些实验上自旋的确定,使得研究π1/2~-[541](direct X)vi_(13/2)组态带低自旋旋称反转的系统学规律成为可能。需要指出的是在以前的研究结果中,~(166)Lu的π1/2~-[541](direct X)vi_(13/2)组态带的能级摆动规律与相邻奇奇核该组态带的能级摆动规律严重不符,澄清该疑点是我们重新研究该核的主要动力之一。在以前~(168)Lu的研究工作中,只在~(168)Lu中发现两个带,但其中只有晕带的组态得到指定,根据带结构和旋称劈裂的大小估计另一个带极有可能是π1/2~-[541](direct X)vi_(13/2)带。为了澄清以上这些疑点和得到π1/2~-[541](direct X)vi_(13/2)组态带的系统学规律,我们重新研究了。~(166,168)Lu的高自旋态。另外(h_(11/2)_p(i_(13/2))_n组.态带的低自旋旋称反转是一个广为人知的物理现象,但在以前的有关~(166)Lu的结果中对(h_(11/2))_p(i_(13/2))_n组态带白旋的确定与该组态带低自旋旋称反转系统规律相反,这也是我们对~(166)Lu重新研究的一个原因。实验是在北京中国原子能科学研究院HI-13串列加速器上进行的,分别利用入射能量为97MeV和92MeV的~(19)F束通过熔合蒸发反应~(152)Sm(~(19)F,~5n)~(166)Lu和~(154)Sm(~(19)F5n)~(168)Lu布居了~(166)Lu和~(168)Lu的高自旋态。用十台HpGe探测器组成的探测阵列进行γ-γ符合测量,对~(166)Lu和~(168)Lu分别记录了约1.27 * 10~8和0.25 * 10~8个两重和两重以上的符合事件。在~(166)Lu中,共发现了五条转动带,根据它们的顺排在0.28MeV均没有出现上弯,意味着它们的中子均占居i_(13/2)轨道,同时根据在~(165)Lu和~(167)Lu只发现基于9/2~-[514]、7/2~-[404]、1/2~-[541]、1/2~+[411]和5/2~+[402]轨道的转动带及在~(165)Yb和~(167)Hf中晕带均为5/2~+[642]的事实,那么由上述质子轨道和中子轨道组成的转动带是本文发现的五条带的最可能的侯选者。本实验中观察到的五条转动带分别基于7/2~+[404](direct X)5/2~+[642]、9/2~-[514](direct X)5/2~+[642]、1/2~-[541](direct X)5/2~+[642]、5/2~+[402](direct X)5/2~+[642]和1/2~+[642](direct X)5/2~+[642]轨道的转动带。和以前的数据相比主要有以下几点改进:(A)在以前的结果中,包括2000年新发表的有关~(166)Lu的文章,他们均把本文~(166)Lu纲图中(5)和(6)退激系列归属于π1/2~-[541](direct X)v5/2~+[642]转动带,而在本文中通过符合关系一个新的退激系列(7)被发现,根据(6)和(7)之间的符合关系、带交叉频率、γ射线强度和B(M1)/B(E2)的比值等关系,本文认为新发现的退激系列(7)与(6)组成新的π1/2~-[541](direct X)v5/2~+[642]转动带.以前的结果的错误在于把属于1/2~-[541](direct X)5/2~+[642]转动带的α = 0与1/2~-[541](direct X)5/2~+[642]转动带的α = 0误归于一个带,这就澄清了原文献中π1/2~-[541](direct X)v5/2~+[642]转动带能级摆动规律与相邻奇奇核该组态带能级摆动规律不符的疑点,同时把原文献中误归于π1/2~-[541](direct X)v5/2~+[642]转动带的那一个退激系列(5)重新指定为1/2~+[411](direct X)5/2~+[642]带(α = 0);(B)通过分析实验数据、跃迁能量系统学和运用顺排相加性规则对以前实验中建立的9/2~-[514](direct X)5/2~+[642]和7/2~+[404](direct X)5/2~+[642]带的自旋进行了重新指定,把它们的自旋在原文的基础上加1个单位,澄清了以前的有关~(166)Lu结果中对9/2~-[514](direct X)5/2~+[642]组态带自旋的确定与该组态带低自旋旋称反转事实相反的疑点;(C)新发现了基于9/2~-[541](direct X)5/2~+[642]组态的转动带。在~(168)Lu中,共观察到了四条转动带,分别是π1/2~-[541](direct X)v5/2~+[642]、7/2~+[404](direct X)5/2~+[642]、 9/2~-[514](direct X)5/2~+[642]和7/2~+[404](direct X)5/2~-[523](本文新建立的带)带,本文对其中晕带7/2~+[404](direct X)5/2~+[642]的K值取值与原文献中的取值不同,并根据能量系统学和带头激发能指出不同的原因。 除以上所述外,本文还给出了~(166)Lu和~(168)Lu各γ射线的强度、转动参数A、较强γ射线的DCO值、分支比和B(M1)/B(E2)等实验值。基于实验和理论预期的B(M1)/B(E2)比值的比较、各带带交叉行为、顺排相加性、带头激发能和转动参数A对各带的组态和自旋进行了指定。最后通过对实验上对~(162,164)Tm、~(174)Ta和~(176)Re的π1/2~-[541](direct X)vi_(13/2)组态带p-n剩余相互作用信息的提取,指出奇质子核中1/2~-[541]带的带交叉频率相对相邻偶偶核的延迟约三分之一到一半左右,其原因是由于p-n剩余相互作用所造成的(包含了对效应和形变变化的CSM模型能够解释另一半的偏离),可以定性的认为正是由于形变、对相互作用的变化和剩余p-n相互作用三者相结合导致了整个的1/2~-[541]带中带交叉频率的偏离。旋称反转机制综述和πh_(932)(direct X)vi_(l3/2)组态的系统学首先对导致旋称反转的各种机制做一简单回顾,同时对ππh,u2⑩vi,钔组态带系统学规律做一简单总结,总结了πh_(11/2)(direct X)Vi_(13/2)组态带的跃迁能量系统学规律。在最近,随着~(162)Tm、~(164)Tm、~(174)Ta和~(176)Re等几个奇奇核中半退耦带1/2~-[541](direct X)vi_(13/2)的自旋通过实验方法的确定,人们惊奇的发现在上述这些核~(162)Tm、~(164)Tm、~(174)Ta和~(176)Re)中半退耦带1/2~-[541](direct X)vi_(13/2)在低自旋区都是旋称反转的。人们就会很自然的回头去看那些在该区已经布居1/2~-[541](direct X)vi_(l3/2)组态带的那些核,结果发现对于该组态带的自旋的指定是很杂乱无章的,有些自旋的确定即不符合能量系统学又与顺排相加性规则相悖,如在~(172)Ta和~(178)Re中(值得指出的是有关这两个核的文章均是在十年前发表的),自旋的指定明显与最近发表的该区πhg_(9/2)(direct X)vi_(13/2)组态带自旋不符,本文通过能量系统学和顺排相加性对~(172)Ta和~(178)Re的1/2~-541](direct X)vi_(13/2)组态带自旋做了修改,分别增加了3h和h。本文通过对最新结果~(162)Tm、~(164)Tm、~(170)Lu、~(170,174,176)Ta、~(176)Re、~(180)Ir)和以前的结果(~(172)Ta和~(178)Re)及本文的结果(~(166,168)Lu)对上述12个核的1/2~-[541](direct X)vi_(13/2)组态带的S(I) = E(I)-E(I-1)- E(I + 2)-E(I + 1)-E(I - 1)-E(I - 2)]/2~I的变化图的分析,继A ≈ 130区7πh_(11/2)(direct X)vh_(11/2)组态带和A ≈ 160区πh_(11/2)(direct X)vi_(13/2)组态带的系统学规律以后,首次总结出A ≈ 170区π1/2~-541](direct X)vi_(13/2)组态带的系统学规律:反转点的自旋随N的增加而增加,随Z的增加而减小,与πh_(11/2)(direct X)和πh_(11/2)(direct X)vi_(13/2)转动带的系统学规律很相似,即反转点自旋均随中子和质子单调地变化。通过对各种理论模型的研究发现三轴形变、科里奥利力、带交叉与自反转和p-n相互作用在奇奇核中都有可能导致旋称反转,包含有p-n相互作用的粒子-转子模型在πh_(11/2)(direct X)和vh_(11/2)、πh_(11/2)和π1/2 ~-[541](direct X)vi_(13/2)组态带中的旋称反转上取得了某些成功,表明p-n相互作用在解释奇核低自旋反转现象中起着很重要的作用。通过对实验上π1/2~-[541](direct X)vi_(13/2)组态带旋称反转点与文献中理论计算值的比较,得出p-n相互作用强度的变化可能是导致π1/2~-[541](direct X)vi_(13/2)组态带症称反转点变化主要原因的结论。过渡区核~(87)Zr的高自旋态研究在A≈80区,许多原子核的中子和质子数都处在28和50两个满壳层之间,对于这些核而言,任何一种核子数的改变都有可能导致核形状的显著变化。有研究结果表明,对于40≤Z≤45的核来讲,N=46是变形核向球形核变化的转折点。在40≤N≤50区,对Zr(Z=40)同位素系列中诸原子核能级结构伴随中子数改变而发生的变化的研究将会帮助我们了解这个形状变化的过程。我们所研究的~(87)Zr含有47个中子,就处于这个过渡区。实验是在北京中国原子能科学研究院HI-13串列加速器上进行的,利用入射能量为118MeV的~(32)S束通过~(58)Co(~(32)S,3pn)~(87)Zr熔合蒸发反应布居。~(87)Zr的高自旋态,实验用的靶为附有Ta衬的厚度1082μg/cm~2的~(59)Co箔。用7台HpGe探测器组成的探测阵列进行γ-γ符合测量。同时采用一个小平面光子探测器探测低能γ射线。本实验记录了约1.5 * 10。个两重以上的符合事件,建立了自旋直到37/2和43/2的能级纲图。研究的结果表明:~(87)Zr与相邻同中子奇A核的正宇称低激发能级之间存在着很强的相似性,而与相邻奇A核同位素相比,结构变化明显, 这可能表明在该核区对核形变的影响中子占主要地位,质子影响较小。激发能随中子变化的比值图呈阶梯状,认为R ≈ 1.5,R_x ≈ 2.0和R_x ≥ 2.2分别代表核形变的三个区域,即球型核、过渡区核和形变核。通过与相邻(Z,N + 1)偶偶核低激发态能级相比较的方法对各低激发能级组态的主要成分进行了估计,发现随自旋的增加,出现了各能级组态之间的混杂。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文首先介绍了原子核高自旋态的历史、发展和现状,然后介绍了研究原子核高自旋态的理论方法和实验技术——在束γ谱学。最后给出我们所做的在束γ实验16O+159Tb,分析和讨论了170Ta的高自旋态及其特征。 利用在束γ谱学方法,通过16O+159Tb重离子融合蒸发反应,在束流能量105MeV下,研究了170Ta的高自旋态。观察到170Ta的三个转动带,其中新发现了一个由π1/2-[541]准质子和ν5/2-[523]准中子耦合而成的非扭曲型(nondistorted band)转动带,这是在此稀土区首次发现该种耦合模式,和一个不优先的转动系列,从而大大修正了原170Ta的高自旋能级纲图。在推转壳模型(CSM)的框架内,对170Ta的转动带结构进行了讨论。 通过延迟符合测量法对所观测到的同质异能态进行了寿命测量。测量并确定了169Ta的9/2-[514]带9/2-能级的半衰期为T1/2=28±5ns。169Ta的1/2-[541]带5/2-能级的半衰期为T1/2=17±5ns。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文以A~160区奇奇核的高自旋态核结构为研究对象,详细地总结分析了该区奇奇核[h11/2]p[i13/2]n带的性质,利用在束核谱学实验手段布居和测量了166Ta核高自旋态能级结构、借助模型理论对该核实验结果进行分析,还从理论方面系统地研究了A~160区奇奇核[h11/2]p[i13/2]n带的signature反转现象与形变的关系,取得了一些创新成果。 奇奇核高j组态带的signature反转现象系统地存在于A~160、A~130和A~80核区,目前理论上提出的各种可能机制还不能彻底解释清楚这一现象。本文中较详细地归纳了A~160区奇奇核signature反转带,即[h11/2]p[i13/2]n带,实验数据的一些系统学规律,具体贡献在于 1、总结了晕态[h11/2]p[i13/2]n带的跃迁能量系统学规律,指出存在这种规律的原因在于形变和价核子耦合性质随质子数和中子数增减的有规律变化。 2、展示了随质子数增大和中子数减小该带准粒子顺排角动量相加性逐渐变差的现象,指出这种变差的原因可能是形变减小导致剩余n-p相互作用的增强,以及奇奇核带和与之相比较的奇核带形变差异增大。文中强调了使用顺排角动量相加性规则时要考查相加前后两个signature分支顺排角动量的相对大小。跃迁能量系统学规律和顺排角动量相加性规则是目前指定该区奇奇核[h11/2]p[i13/2]n带核态自旋值的有效工具,上述工作有益于研究新核时正确运用这些工具。文中其它归纳和总结工作也为后续研究提供了较为系统的参考资料。 此前尚未有人对166Ta核做过在束研究,我们在中国原子能科学研究院利用HI-13串列加速器通过141Pr(28Si,3n)反应布居和测量了166Ta核高自旋态。实验中使用了5片厚500μg/cm2纯度98.0%的141Pr自衬靶,7台HpGe反康谱仪和1台平面型HpGe探测器。用改变束流能量测量在束单谱和剩余放射性的方法确认实验中生成了166Ta核并为符合实验选定了束流能量。γ-γ符合实验束流能量为127MeV,实验中共收集到约50×106个两重符合事件。实验后用152Eu放射源对探测系统进行了能量和效率刻度。符合实验数据被反演成γ-γ、X-γ和DCO二维谱。通过处理和分析实验数据,得到以下主要结果: 1、用TaKX射线开窗、比较不同束流能量下的在束单谱和排除已知核射线等方法确认了属于166Ta的射线,根据这些射线的级联关系首次建立起了166Ta核的在束能级纲图,其中包括4条转动带,60条射线。166Ta核的晕带是一条耦合性较强的带,建立起的该带能级纲图中包括16条能级和29条射线,每一signature分支有7条E2拉伸跃迁。另外三条带是两条耦合带和一条双退耦带。其中一条耦合带的耦合性较强、位置较高,可能是4准粒子带。 2、计算γ-γ符合矩阵和DCO矩阵开窗谱中峰下面积,得到了166Ta核55条射线在实验中的相对强度Iγ、29条射线的方向关联系数Iγ(35°)/Iγ(75°)和21个核态退激过程的跃迁强度分支比λ等数据。 3、借助模型计算,为实验中发现的4条转动带指定了组态。晕核组态定为9/2[514]p3/2[651]n, Kπ值为6-。另外两条耦合带的组态被定为9/2[514]p3/2[521]n和9/2[514]p3/2[521]n{3/2[651]n}2,退偶带的组态可能是1/2[514]p3/2[651]n。 4、通过分析跃迁能量系统学规律和运用顺排角动量相加性规则指定了166Ta核晕带核态的自旋值,还使用其它方法倾向性地指定了另外三条带的自旋值。 5、提取了一些核态退激过程B(M1)/B(E2)理论值比实验值偏大,指示该带可能存在负γ形变。另外两条耦合带的B(M1)/B(E2)计算值与实验值比较接近,这方面支持我们对其组态的指定。回弯之前的166Ta核晕带B(M1)/B(E2)值与已知的同位素和同中子素奇奇核晕带值相比大许多,我们认为这是组态和形变变化造成的。 6、166Ta和邻核晕带集体转动惯量随转动角频率平方的变化关系显示准质子占据h11/2子壳顶部轨道时顺排发生得较晚,准中子占据i13/2子壳低部轨道时顺排发生得较早。 7、实验结果显示166Ta核的晕带出现signature反转,signature反转点自旋值和反转点之下M1跃迁摆动幅度都与全区规律相符。 我们研究166Ta核的高自旋态能级结构旨在为研究奇奇核signature反转提供新的实验数据,实验研究达到了预期的目的,实验结果证实了在轻Ta奇奇核同位素中也系统地存在signature反转。 在讨论A~160区奇奇核[h11/2]p[i13/2]n带的signature反转机制方面,作者首次利用现有的TRS计算方法系统地考察了该区32个奇奇核该带形变极其随核子数增减的变化趋势,进而通过CSM计算考察了形变对该带signature劈裂的影响。这方面的研究成果主要包括: 1、计算结果显示,该区核芯较容易在γ形变方向受到价核子的形状极化作用,89≤Z≤95时i13/2准中子一般具有正γ形变驱动作用且随着中子数减小此正γ形变驱动作用逐渐增强,67≤Z≤75时h11/2准质子一般具有负γ形变驱动作用且随着质子数增大此负γ形变驱动作用逐渐增强,Z=63和65时h11/2准质子两个signature组态具有不同方向的γ形变驱动作用,总体看h11/2准质子的γ形变驱动作用没有i13/2准中子的强。 2、只考虑ε2和γ形变参量的TSR计算结果显示A~160区中N=89和91奇奇核的[h11/2]p[i13/2]n带有较大的正γ形变,N≥93奇奇核中该带γ形变则较小或为负γ形变。计算出的不同核该带的γ形变值随中子数增加逐渐减小、随质子数变化的规律较复杂且变化幅度没有随中子数变化时那么明显,Z≤67时一些核两signature的形变还有明显的差异。 3、CSM计算表明正γ形变可以导致费米面附近的h11/2准质子轨道signature反转,并且存在正γ形变时ε2形变、ε4形变、质子对力和质子数的不同都对signature反转幅度和反转点对应的角频率都有影响,[h11/2]p[i13/2]n带两个signature组态形变的不同对费米面附近i13/2准中子轨道的位置也有影响。 4、利用从TRS计算出的形变参量所做CSM计算显示,该区部分奇奇核[h11/2]p[i13/2]n带出现signature反转。计算出的signature反转随中子数或质子数变化趋势有些和实验结果相符,也有一些与实验结果不符,对有些实验上发现signature反转的核还计算不出反转。计算结果预言该区一些没有实验数据的奇奇核[h11/2]p[i13/2]n带中也会存在signature反转,这些核是154Eu、162Ta、164Ta和168Re等。 此前对解释A~160区奇奇核signature反转的系统规律时是否必须考虑γ形变还没有定论,本文工作证实了较明显的正γ形变对signature反转起着重要的作用。但是,单纯考虑γ形变并不能完全再现A~160区奇奇核signature反转规律,今后的研究工作还要系统而细致地考虑各方面因素。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以盆栽法研究了不同浓度1,2,4-三氯苯(TCB)胁迫对大豆下胚轴膜脂过氧化作用的影响。结果表明,100—300μg·g-1TCB胁迫初期(1—3d)促使萌发大豆下胚轴内过氧化氢(H2O2)的积累显著增加,同时伴随质膜电解质渗漏率和组织自动氧化速率升高,显示发生膜脂质过氧化作用。TCB胁迫1—6d使活性氧清除酶功能紊乱,其中过氧化物酶(POD)活性升高,过氧化氢酶(CAT)活性开始上升后转为下降。推测大豆下胚轴受TCB胁迫伤害过程中,活性氧代谢失衡造成的膜脂质过氧化起着重要作用。