132 resultados para 406
Resumo:
近十年,植物群体遗传学的研究飞速发展,然而与海拔相关的植物群体遗传结构和遗传变异研究却相对较少。到目前为止,还不清楚遗传变异与海拔之间是否有一个通用的格局。在山区,各种生态因子,如温度、降水、降雪、紫外线辐射强度以及土壤成分都随海拔梯度急剧变化,造成了即使在一个小的空间区域,植被类型变化显著,这种高山环境的异质性和复杂性为我们研究植物群体遗传结构和分化提供了方便。沙棘(Hippophea)属于胡颓子科(Elaeagnaceae)为多年生落叶灌木或乔木,雌雄异株,天然种群分布极为广泛。中国沙棘(H. rhamnoides subsp. sinensis)是沙棘属植物中分布较广的一个亚种,种内形态变异非常丰富,加之其具有独特的繁育系统和广泛的生态地理分布,是研究沙棘属植物遗传变异和系统分化的理想材料。本文从1,800 m 到3,400 m 分5 个海拔梯度进行取样,用RAPD 和cpSSR 分子标记研究了卧龙自然保护区中国沙棘天然群体的遗传结构和遗传变异。5 个取样群体依次标记为A、B、C、D 和E,它们分别代表分布在海拔1,800,2,200,2,600,3,000 和3,400 m 的5 个天然群体。RAPD实验用11 条寡核苷酸引物,扩增得到151 个重复性好的位点,其中143 个多态位点,多态率达94.7%。在5 个沙棘群体中,总遗传多样性值(HT)为0.289,B群体内的遗传多样性值为0.315,这完全符合沙棘这种多年生、远交的木本植物具有高遗传变异的特性。5 个群体内遗传多样性随海拔升高呈低-高-低变异趋势,在2,200 m海拔处的B群体遗传多样性达最大值0.315,3,400 m海拔处的E群体则表现最小仅0.098。5 个群体间的遗传分化值GST=0.406,也即是说有40.6%的遗传变异存在于群体间,1,800 m海拔处的A群体与其它群体的明显分离是造成群体间遗传分化大的原因。UPGMA聚类图和PCoA散点图进一步确证了5 个群体间的关系和所有个体间的关系。最后,经过Mantel检测,遗传距离与海拔表现了明显的相关性(r = 0.646, P = 0.011)。cpSSR 实验中,经过对24 对cpSSR 通用引物筛选,11 对引物能扩增出特异性条带,只有2 对引物(ccmp2 和ARCP4)呈现多态性。4 个等位基因共组合出4 种单倍型,单倍型Ⅰ出现在A 群体的所有个体和B 群体的8 个个体中,C、D、E 三个群体均不含有,而单倍型Ⅱ出现在C、D、E 三个群体的所有个体及B 群体的18 个个体中,A 群体不含有。另外两种单倍型Ⅲ和Ⅳ为稀有类型,仅B 群体中的4 个个体拥有。这种单倍型分布模式和TFPGA 群体聚类图揭示了,C、D、E 群体可能来源于同一祖先种,而A 群体却是由另一祖先种发展起来的,B 群体则兼具了这两种起源种的信息,这可能是因为在历史上的某一时期,在中国沙棘群体高山分化的过程中,B 群体处某个或者某些个体发生了基因突变,具备了适应高海拔环境的能力,产生了高海拔沙棘群体的祖先种。 In recent ten years, studies about population genetics of plants developed rapidly,whereas their genetic structure and genetic variation along altitudinal gradients have beenstudied relatively little. So far, it is uncleared whether there is a common pattern betweengenetic variation and altitudinal gradients. In the mountain environments, importantecological factors, e.g., temperature, rainfall, snowfall, ultraviolet radiation and soil substratesetc., change rapidly with altitudes, which cause the vegetation distribution varying typically,even on a small spatial scale. The mountain environments, which are heterogeneous andcomplex, facilitate and offer a good opportunity to characterize population genetic structureand population differentiation.The species of the genus Hippophae L. (Elaeagnaceae) are perennial deciduous shrubs ortrees, which are dioecious, wind-pollinated pioneer plants. The natural genus has a widedistribution extending from Northern Europe through Central Europe and Central Asia toChina. According to the latest taxonomy, the genus Hippophae is divided into six species and12 subspecies. The subspecies H. rhamnoides ssp. sinensis shows significant morphologicalvariations, large geographic range and dominantly outcrossing mating system. Thesecharacteristics of the subspecies are favourable to elucidate genetic variation and systemevolution. To estimate genetic variation and genetic structure of H. rhamnoides ssp. sinensisat different altitudes, we surveyed five natural populations in the Wolong Natural Reserve at altitudes ranging from 1,800 to 3,400 m above sea level (a.s.l.) using random amplifiedpolymorphic DNA markers (RAPDs) and cpSSR molecular methods. The five populations A,B, C, D, and E correspond to the altitudes 1,800, 2,200, 2,600, 3,000 and 3,400 m,respectively.Based on 11 decamer primers, a total of 151 reproducible DNA loci were yielded, ofwhich 143 were polymorphic and the percentage of polymorphic loci equaled 94.7%. Amongthe five populations investigated, the total gene diversity (HT) and gene diversity within population B equaled 0.289 and 0.315, respectively, which are modest for a subspecies of H.rhamnoides, which is an outcrossing, long-lived, woody plant. The amount of geneticvariation within populations varied from 0.098 within population E (3,400 m a.s.l.) to 0.315within population B (2,200 m a.s.l.). The coefficient of gene differentiation (GST) amongpopulations equaled 0.406 and revealed that 40.6% of the genetic variance existed amongpopulations and 59.4% within populations. The population A (1,800 m a.s.l.) differed greatlyfrom the other four populations, which contributes to high genetic differentiation. A UPGMAcluster analysis and principal coordinate analyses based on Nei's genetic distances furthercorroborated the relationships among the five populations and all the sampling individuals,respectively. Mantel tests detected a significant correlation between genetic distances andaltitudinal gradients (r = 0.646, P = 0.011).Eleven of the original 24 cpSSR primer pairs tested produced good PCR products, onlytwo (ccmp2 and ARCP4) of which were polymorphic. Four total length variants (alleles) werecombined resulting in 4 haplotypes. The haplotype was present in all individuals of Ⅰpopulation A and 8 individuals of populations B, the other three populations (C, D and Epopulations) did not share. The haplotype was present in all individuals of populations C, D Ⅱand E and 18 individuals of populations B, population A did not share. The other twohaplotypes and were rare haplotypes, which were only shared in 4 individuals of Ⅲ Ⅳpopulation B. The distribution of haplotypes and TFPGA population clustering map showedthat the populations C, D and E might be origined from one ancestor seed and population Amight be from another, whereas population B owned information of the two ancestor seeds. Itwas because that gene mutation within some individual or seed in the location of population Bwas likely to happen in the history of H. rhamnoides, which was the original ancestor of thehigh-altitude populations.
Resumo:
测量了20~55 MeV F5+离子和Ta原子碰撞中Ta产生的L壳层X射线。计算了Ta的L各支壳层产生截面的比值和总截面的比值。利用L壳层的辐射跃迁几率、Croster-Kroning跃迁几率和L亚壳层的荧光产额,将平面波波恩近似(PWBA)和ECPSSR理论计算的电离截面转换为L层X射线产生截面,并与实验结果进行比较。结果表明,σ(Ll)/σ(Lα)、σ(Lγ)/σ(Lα)和σ(Ltotal)/σ(Lα)与ECPSSR理论预测结果吻合较好,σ(Lβ)/σ(Lα)较两种理论预测值均偏小。
Resumo:
目的观察p53腺病毒重组体(AdCMV-p53)转染对p53缺失肿瘤细胞辐射敏感性的影响。方法用腺病毒重组体(AdCMV-p53/GFP)转染经0、0.25、0.5、1.0、1.5、2.0Gyγ射线辐射的H1299(nullp53)和PC-3(nullp53)细胞,用流式细胞分析法检测外源性p53表达,用克隆形成法检测肿瘤细胞增殖能力。结果辐射联合AdCMV-p53转染组p53阳性细胞所占比例均明显高于单纯辐射组、单纯AdCMV-p53转染组和辐射联合AdCMV-GFP转染组同种细胞p53阳性率(P<0.05);AdCMV-p53转染不仅明显提高肿瘤细胞辐射敏感性,而且与肿瘤细胞组织来源有关。结论p53腺病毒重组体转染对p53基因缺失肿瘤细胞低剂量辐射敏感性的增强作用与肿瘤细胞来源的组织器官和细胞类型有关。
Resumo:
利用14 MeV中子轰击天然铂靶,通过~(198)Pt(n,2p)~(197)Os反应产生锇的一种同位素~(197)Os,以γ(X)谱学方法鉴别了它,同时研究了它的衰变性质。观测到了能量为41.2、50.7、196.8、199.6、223.9、233.1、250.2、342.1、403.6和406.4keV的10条新γ射线,并指定为~(197)Os的衰变。测定它的半衰期为2.8±0.6 min。
Resumo:
通过1 3 0 Te(1 6O ,5nγ) 1 4 1 Nd反应布居了1 4 1 Nd的高自旋态能级 .对反应产生的在束γ射线进行了γ射线单谱和γ -γ符合测量 .建立了激发能达 76 1 4 .5keV的1 4 1 Nd能级纲图 ,新发现了 1 2条γ射线和 1 5个能级 .基于实验测量的γ跃迁各向异性 ,建议了1 4 1 Nd部分能级的自旋值 .用一个h1 1 2 价中子空穴与1 4 2 Nd核芯晕态的耦合可以定性地解释1 4 1 Nd的能级结构
Resumo:
描述了加速器自动调束系统的设计方法,介绍了加速器调束工作的现状和实现自动调束的意义,阐述了基于遗传算法进行加速器自动调束的原理和加速器自动调束系统的设计方法,给出了计算机仿真实验结果,并指出了自动调束研究的发展方向.
Resumo:
Molar heat capacities of ibuprofen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 400 K. The polynomial functions of C-p,C-m (J K-1 mol(-1)) versus T were established on the heat capacity measurements by means of the least fitting square method. The functions are as follows: for solid ibuprofen, at the temperature range of 79.105 K less than or equal to T less than or equal to 333.297 K, C-p,C-m = 144.27 + 77.046X + 3.5171X(2) + 10.925X(3) + 11.224X(4), where X = (T - 206.201)/127.096; for liquid ibuprofen, at the temperature range of 353.406 K less than or equal to T less than or equal to 378.785 K, C-p,C-m = 325.79 + 8.9696X - 1.6073X(2) - 1.5145 X-3, where X = (T - 366.095)/12.690. A fusion transition at T = 348.02 K was found from the C-p-T curve. The molar enthalpy and entropy of the fusion transition were determined to be 26.65 kJ mol(-1) and 76.58 J mol(-1) K-1, respectively. The thermodynamic functions on the base of the reference temperature of 298.15 K, (H-T - H-298.15) and (S-T - S-298.15), were derived. Thermal characteristic of ibuprofen was studied by thermo-gravimetric analysis (TG-DTG) and differential scanning calorimeter (DSC). The temperature of fusion, the molar enthalpy and entropy of fusion obtained by DSC were well consistent with those obtained by adiabatic calorimeter. The evaporation process of ibuprofen was investigated further by TG and DTG, and the activation energy of the evaporation process was determined to be 80.3 +/- 1.4 kJ mol(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
2001~2003年在长白山自然保护区内3个垂直植被带的典型群落红松阔叶林、云冷杉林和岳桦林内,利用网袋埋藏法对群落内的6个主要优势乔木树种凋落物进行埋藏分解试验,研究凋落物分解速率及其变化动态;同时利用分解模型,模拟预测凋落物的分解进展,为深入研究这6个树种的营养策略、群落养分循环等奠定基础,也为森林生态系统管理提供理论依据。研究结果表明,所研究的6个树种凋落物都表现出随时间进程失重率增大的现象,但失重率并不与时间呈线性相关。在分解的638d(1.75a)后,6种叶凋落物的分解速率明显升高。到分解实验结止时(699d),叶凋落物干重剩余率从小至大依次为白桦(24.56%)、紫椴(24.81%)、红松(38.48%)、鱼鳞云杉(41.15%)、岳桦(41.53%)和臭冷杉(42.62%)。枝凋落物分解速率明显低于叶,枝干重剩余率从小至大依次为紫椴(44.98%)、臭冷杉(64.62%)、红松(72.07%)、鱼鳞云杉(73.51%)、白桦(77.37%)和岳桦(80.35%)。在同一海拔高度,阔叶树种叶凋落物分解速率大于针叶树种。并且随着海拔的升高,叶凋落物分解速率逐渐减慢。模型分析预测结果表明,长白山北坡各垂直植被带的优势树种叶凋落物分解95%需4.5~8.0a;年分解系数为紫椴(0.686)>白桦(0.624)>红松(0.441)>鱼鳞云杉(0.406)>臭冷杉(0.397)>岳桦(0.385);枝凋落物分解95%需7.8~29.3a,不同树种间的差异明显。枝年分解系数为紫椴(0.391)>臭冷杉(0.204)>红松(0.176)>鱼鳞云杉(0.157)>白桦(0.148)>岳桦(0.102)。
Resumo:
Three nitrophenol isomer-imprinted polymers were prepared under the same conditions using 4-vinylpyridine as a functional monomer. Different recognition capacities for template molecules were observed for the three polymers. Another imprinting system with stronger acidity than nitrophenol isomers, 2-hydroxybenzoic acid (salicylic acid) and 4-hydroxybenzoic acid, was imprinted using 4-vinylpyridine or acrylamide as functional monomer respectively. Both 4-hydroxybenzoic acid-imprinted polymers using the two monomers showed recognition ability for the template molecule. However, when acrylamide was chosen as functional monomer, the salicylic acid-imprinted polymer showed very weak recognition for the template molecule, whereas strong recognition ability of the resultant polymer for salicylic acid was observed with 4-vinylpyridine as functional monomer. It seems that the structure and acidity of template molecules is responsible for the difference in recognition, by influencing the formation and strength of interaction between template molecule and functional monomer during the imprinting process. An understanding of the mechanism of molecular imprinting and molecular recognition of MIPs will help to predict the selectivity of MIPs on the basis of template molecule properties. Copyright (C) 2003 John Wiley Sons, Ltd.