234 resultados para 24-238
Resumo:
The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.
Resumo:
Silica-supported molybdenum surface complexes were prepared by the reaction between (N=) Mo(OtBu)(3) and silica via displacement of the tert-butoxy ligands for siloxyls from the silica surface. The structure of the surface molybdenum complexes was well defined by in-situ FT-IR, elemental analysis, H-1 NMR and C-13 CP/MAS NMR techniques. The surface complexes could undergo alcoholysis reaction with CD3OD and CH3OH in the same way as free (N =) Mo(OtBu)(3) and they show high catalytic activity and selectivity in olefin epoxidation. Initial rates up to 24.9 mmol epoxide (mmol Mo)(-1) min(-1) were achieved in the epoxidation of cyclohexene using TBHP as oxidant.