222 resultados para 206-1256
Resumo:
Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Epitaxial layers of cubic GaN have been grown by metalorganic vapor-phase epitaxy (MOVPE) with Si-doping carrier concentration ranging from 3 x 10(18) to 2.4 x 10(20)/cm(3). Si-doping decreased the yellow emission of GaN. However, the heavily doped n-type material has been found to induce phase transformation. As the Si-doping concentration increases, the hexagonal GaN nanoparticles increase. Judged from the linewidth of X-ray rocking curve, Si-doping increases the density of dislocations and stacking faults. Based on these observations, a model is proposed to interpret the phase transformation induced by the generated microdefects, such as dislocations and precipitates, and induced stacking faults under heavy Si-doping. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We have examined photoluminescence (PL), IR absorption and Raman spectra of a series of hydrogenated amorphous silicon oxide (a-SiOx:H, (0 < x < 2)) films fabricated by plasma enhanced chemical vapor deposition (PECVD). Two strong luminescence bands were observed at room temperature, one is a broad envelope comprising a main peak around 670 nm and a shoulder at 835 nm, and the other, peaked around 850 nm; is found only after being annealed up to 1170 degrees C in N-2 environment. In conjunction with IR and Raman spectra, the origins of the two luminescent bands and their annealing behaviors are discussed on the basis of quantum confinement effects.
Resumo:
The magnetic-type plasmon resonant of a metal-dielectric-metal nanocavity working at the wavelength of 1.55 mu m is explored, in which the upper layer is periodically patterned with metallic nanostrip arrays. In the dielectric film layer, the magnetic energy intensity is enhanced about 1700 times when irradiated with a p-polarized plane wave. We numerically studied the dispersion of the modes and the Q-value of this periodic cavity arrays. Q value is estimated about 18 and still has room for further improvement. It provides a new type of nanocavity that exhibits a strong magnetic response.
Resumo:
This paper presents a low-voltage, high performance charge pump circuit suitable for implementation in standard CMOS technologies. The proposed charge pump has been used as a part of the power supply section of fully integrated passive radio frequency identification(RFID) transponder IC, which has been implemented in a 0.35-um CMOS technology with embedded EEPROM offered by Chartered Semiconductor. The proposed DC/DC charge pump can generate stable output for RFID applications with low power dissipation and high pumping efficiency. The analytical model of the voltage multiplier, the comparison with other charge pumps, the simulation results, and the chip testing results are presented.
Resumo:
Modelica语言仿真建模在科研工作中已经得到了广泛应用。它能方便地对包含机械、电子、液压、控制、热流等领域的复合物理系统进行基于组件的仿真。现有基于Modelica语言的仿真建模软件支持图形化建模和文本建模两种方式,集成了面向对象、陈述式描述、统一建模、组件重用的优势,给科研工作带来了巨大的便利。 Modelica软件仿真的过程可归结为微分代数方程(differential algebraic equation,DAE)系统的求解。在求解DAE系统时,需要对DAE系统进行约简,直到庞大的DAE系统约简为目前自动求解方法成熟的ODE系统,或约简为方程个数不多的、指标较低的DAE系统,才能使Modelica建模仿真软件具有工业上的应用价值。在约简DAE系统之前,需要对之进行预处理,根据方程之间的数据依赖关系进行拓扑排序,确定求解顺序。排序的过程对应着将DAE系统结构关联矩阵进行块状下三角(block lower triangle,BLT)变换。寻找强连通分量和拓扑排序是对DAE系统进行预处理的重要组成部分。 本文剖析了Modelica软件在仿真时的运行机制,使用几个实例来详细描述在仿真过程中,Modelica软件完成的工作。在寻找强连通分量和拓扑排序这一步,本文提出了使用Kosaraju算法的策略,对由模型得到的有向图直接使用Kosaraju算法,得出DAE系统的求解顺序。文章叙述了强连通分量的含义,并阐述了在求强连通分量时的理论依据,由此引出了Tarjan算法和Kosaraju算法,再分析和比较Tarjan算法和Kosaraju算法,对比了两种策略的优劣,并进行了实验。同时,本文分析了OpenModelica软件包的结构,修改了软件包在寻找强连通分量及拓扑排序相关模块的代码。
Resumo:
This paper deals withmodel generation for equational theories, i.e., automatically generating (finite) models of a given set of (logical) equations. Our method of finite model generation and a tool for automatic construction of finite algebras is described. Some examples are given to show the applications of our program. We argue that, the combination of model generators and theorem provers enables us to get a better understanding of logical theories. A brief comparison between our tool and other similar tools is also presented.
Resumo:
简单介绍了影响光催化氧化有机物反应速度的五个因素,通过分析找出影响光催化氧化有机物反应速度的主要因素,必须同时考虑反应内E_((r))和S_((r))相互综合因素对反应器自由基产生率的影响;通过实验方法找出对应不同功率光源的光催化载体最优半径r_(opt)具体数值,是提高固定膜光催化氧化净水器性能的关键,如果把固定光催化膜载体布置在半径r_(opt)的圆周上,就能充分利用光源的光能,在反应器有限的空间内使得适当强度的紫外光照射到有效光催化剂的面积适当,这时光催化反应器光能利用率最高。