134 resultados para 16s rRNA sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During an occurrence of Hole-Rotten Disease of Laminaria japonica in a cultivating farm in Ma Shan Shandong province, China, 42 Gram-negative epiphytic marine bacteria were isolated and purified on Zobell 2216E marine agar medium. Morphological and biochemical characteristics of each isolated bacterium were studied, and molecular identification of bacterial strains was conducted with polymerase chain reaction amplification to 16S rRNA gene sequence analysis. Based on nearly full length of 16S rRNA gene sequence analysis, the isolated strains were bacteria that belong to genus Pseudoalteromonas, Vibrio, Halomonas and Bacillus. The percentage of each group was 61.9%, 28.6%, 7.1% and 2.4% respectively. The results of pathogenicity assay showed that 12 strains could cause the disease symptoms in sporophytes of L. japonica. They belonged to the genera Pseudoalteromonas, Vibrio and Halomonas with 58.3%, 33.3%, 8.3% respectively. The results suggest that these bacteria are the dominant marine bacteria on diseased sporophytes of L. japonica and may be the potential pathogenic bacteria associated with Hole-Rotten Disease of L. japonica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, Biolog test and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 degrees C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An algalytic bacterium provisionally designated as TL1 was isolated from Tai Lake, a large freshwater lake in the Yangtze Delta plain on the border of the Jiangsu and Zhejiang provinces and close to Wuxi city in the People's Republic of China. Strain TL1 was identified as Achromobacter sp. based on its biophysical and biochemical properties and the analysis of its 16S rRNA sequence. Microcystis aeruginosa, which is the most common toxic cyanobacterium in eutrophic freshwater, could be decomposed by strain TL1. The results showed that after inoculation with the algalytic bacterium, the content of chlorophyll-a, maximum PSII quantum yield, and maximum electron transport rates of the alga decreased sharply. At first, the algal cells enhanced the activities of some antioxidative enzymes, but subsequently, the activities of antioxidative enzymes fell sharply once damage of the algal cells was achieved. The filtrate from strain TL1 culture suspension, after autoclaving and treatments with proteinase K, strongly inhibited algal growth, indicating that the lytic metabolites were extracellular and thermostable, not a protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors would like to thank Jin Sun, Jian Sun, Liangliang Kong, Nianshuang Wang, Chunhui Wang, Linbao Zhang and Ying Zhang for their assistance in the project. This work was supported by China Ocean Mineral Resources R&D Association grants DYXM-115-02-2-20 and DYXM-115-02-2-6, Hi-Tech Research and Development Program of China grant 2007AA091903, China National Natural Science Foundation grant 40576069, National Basic Research Program of China grant 2009CB219506 and the Fundamental Research Funds for the Central Universities of China grant 09CX05005A. M. G. K. was funded by incentive funds provided by the UofL-EVPR office and the US National Science Foundation (EF-0412129).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacterial surface colonization is a universal adaptation strategy in aquatic environments. However, neither the identities of early colonizers nor the temporal changes in surface assemblages are well understood. To determine the identities of the most common bacterial primary colonizers and to assess the succession process, if any, of the bacterial assemblages during early stages of surface colonization in coastal water of the West Pacific Ocean, nonnutritive inert materials (glass, Plexiglas, and polyvinyl chloride) were employed as test surfaces and incubated in seawater off the Qingdao coast in the spring of 2005 for 24 and 72 h. Phylogenetic analysis of the 16S rRNA gene sequences amplified from the recovered surface-colonizing microbiota indicated that diverse bacteria colonized the submerged surfaces. Multivariate statistical cluster analyses indicated that the succession of early surface-colonizing bacterial assemblages followed sequential steps on all types of test surfaces. The Rhodobacterales, especially the marine Roseobacter clade members, formed the most common and dominant primary surface-colonizing bacterial group. Our current data, along with previous studies of the Atlantic coast, indicate that the Rhodobacterales bacteria are the dominant and ubiquitous primary surface colonizers in temperate coastal waters of the world and that microbial surface colonization follows a succession sequence. A conceptual model is proposed based on these findings, which may have important implications for understanding the structure, dynamics, and function of marine biofilms and for developing strategies to harness or control surface-associated microbial communities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An orange-pigmented, Gram-negative, nonmotile, strictly aerobic and oxidase- and catalase-positive bacterium (SM-A87(T)) was isolated from the deep-sea sediment of the southern Okinawa Trough area. The main fatty acids were i15 : 0, i17 : 0 3OH, i15 : 1 G, i17 : 1 omega 9c, 15 : 0, i15 : 0 3OH and summed feature 3 (comprising i-15 : 0 2OH and/or 16 : 1 omega 7c). MK-6 was the predominant respiratory quinone. DNA G+C content was 35.8 mol%. Flexirubin-type pigments were absent. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SM-A87(T) formed a distinct lineage within the family Flavobacteriaceae, with < 93% sequence similarity to the nearest strain of genus Salegentibacter. Moreover, strain SM-A87(T) could be distinguished from the nearest phylogenetic neighbors by a number of chemotaxonomic and phenotypic properties. On the basis of polyphasic analyses, it is proposed that strain SM-A87(T) be classified in a novel genus and a new species in the family Flavobacteriaceae, designated Wangia profunda gen. nov., sp. nov. The type strain is SM-A87(T) (CCTCC AB 206139(T)=DSM 18752).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Gram-negative, nonmotile, aerobic and oxidase- and catalase-positive bacterium,, designated D25(T), was isolated from the deep-sea sediments of the southern Okinawa Trough area. Phylogenetic analyses of 16S rRNA gene sequences showed that strain D25(T), fell within the genus Myroides, with 99.2%, 96.0% and 93.4% sequence similarities to the only three recognized species of Myroides. However, the DNA-DNA similarity Value between strain D25(T) and its nearest neighbour Myroides odoratimimus JCM 7460(T) was only 49.9% ( < 70%). Several phenotypic properties could be used to distinguish strain D25(T) from other Myroides species. The main cellular fatty acids of strain D25(T) were iso-C-15:0, iso-C-17:1 omega 9C, iso-C(17:0)3-OH and Summed Feature 3 (comprising C-16:1 omega 7c and/or iso-C(15:0)2-OH). The major respiratory quinone was MK-6. The DNA G+C content was 33.0 mol%. The results of the polyphasic taxonomy analysis suggested that strain D251(T) represents a novel species of the genus Myroides, for which the name Myroides profundi sp. nov. is proposed. The type strain is D25(T) (=CCTCC M 208030(T) = DSM 19823(T)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Southern Okinawa Trough is an area of focused sedimentation due to particulate matter export from the shelf of the East China Sea and the island of Taiwan. In order to understand the geomicrobiological characteristics of this unique sedimentary environment, bacterial cultivations were carried out for an 8.61 m CASQ core sediment sample. A total of 98 heterotrophic bacterial isolates were characterized based on 16S rRNA gene phylogenetic analysis. These isolates can be grouped into four bacterial divisions, including 13 genera and more than 20 species. Bacteria of the gamma-Proteobacteria lineage, especially those from the Halomonas ( 27 isolates) and Psychrobacter ( 20 isolates) groups, dominate in the culturable bacteria assemblage. They also have the broadest distribution along the depth of the sediment. More than 72.4% of the isolates showed extracellular hydrolytic enzyme activities, such as amylases, proteases, lipases and Dnases, and nearly 59.2% were cold-adapted exoenzyme-producers. Several Halomonas strains show almost all the tested hydrolases activities. The wide distribution of exoenzyme activities in the isolates may indicate their important ecological role of element biogeochemical cycling in the studied deep-sea sedimentary environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文对256株胶州湾海洋链霉菌进行了抑菌活性的筛选,并选取10株典型菌株进行化学筛选,获得2株有研究价值的菌株。通过大规模发酵,获得纯化的次级代谢产物,进行了结构解析。通过与其他5株活性菌株的16S rRNA基因序列比较,并结合生理生化、形态特征和培养特征分析,探讨了这两株菌的分类地位。   采用液体扩散法,选用金黄色葡萄球菌、大肠杆菌、绿脓杆菌、八叠球菌、隐球菌、白色念珠菌、Mucor miehei (TÜ 284)和Streptomyces viridochromogenes (TÜ57) 8株受试菌进行抑菌活性的筛选,结果22%的菌株显示出对至少一种受试菌具有抑制作用(抑菌圈Æ ³ 8 mm)。根据菌株的形态特征和抑菌活性特点,选择M024、M028、M042、M083、M086、M095、M097、M124、M134和M226 10株链霉菌进行化学筛选。考察了8种培养基和4种培养条件,结果发现菌株M095在Meat extract培养基、pH 6.5、28℃和95 r/min条件下,菌株M097在Meat extract培养基、pH 7.8、 28℃、95 r/min(条件Ⅰ)和M2+培养基、pH 7.8、 35℃、110 r/min(条件Ⅱ)条件下,可供进一步研究。 对菌株M095(24 L规模)和M097(Ⅰ为30 L规模,Ⅱ为14 L规模)进行发酵,采用乙酸乙酯提取和柱层析分离纯化次级代谢产物,通过ESI-MS、EI-MS、1H-NMR和13C-NMR等波谱解析,鉴定出次级代谢产物的结构。发现菌株M095产生一抑菌活性很强的化合物全霉素,首次证实该全霉素具有抑制丝状真菌的作用;菌株M097主要产生10个化合物,其中8个具有不同程度的生物活性,另外两个化合物中,Aloesaponaria Ⅱ为首次从微生物野生菌株(wild strain)中获得,化合物Cui D为一新结构的蒽醌类化合物。 经分子鉴定,初步认为本实验分离的7株活性海洋链霉菌分属于4个链霉菌类群,结合生理生化、形态特征和培养特征分析,认为菌株M095可能为灰色链霉菌的变种,M097可能为球孢类群中的一个新种。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文以山东近海野生和养殖牙鲆Paralichthys olivaceus(T.& S.)为研究对象,采用同工酶电泳和随机扩增多态性DNA(RAPD)两种方法,进行了群体遗传学研究;另外,用PCR扩增了牙鲆、桂皮斑鲆Pseudorhombus cinnamomeus(T.& S.)、石鲽Kareius bicoloratus,Basilewsky和大菱鲆Psetta maxima 4种鲽形目鱼类mtDNA 16s rRNA基因区的部分片段,采用生物信息、学方法构建了鲽形目分子系统树。主要结果如下:1.首先建立了适于牙鲆同工酶分析的水平淀粉凝胶和垂直聚丙烯酰胺凝胶电泳系统;对获得的牙鲆15种同工酶基本酶谱进行了生化遗传分析,进而对自然和养殖群体的生化遗传结构进行了分析,共记录了29个基因座位,发现了9个多态座位。2.野生群体的生化遗传参数多态基因座位比例(31.O%)、等位基因平均数(1.38)和群体平均杂合度(0.0802)都明显高于养殖群体(24.1%,1.28,O.0788);在野生群体中有9个多态基因座位,而养殖群体仅7个多态基因座位;其中,除了Cat和Idhp-1(仅养殖群体)(P < 0.05)有显著差异、Ldh-C(P < O.01)完全偏离Hardy-Weinberg定律外,其余多态座位基因频率均符合Hardy-Weinberg遗传平衡定律。野生和养殖群体的遗传相似性系数(I)为0.9877,它们的遗传距离(D)是0.0124;两群体间的遗传分化系数G_(st)为0.0681,D_m为0.01,表明总变异中的6.8%的遗传变异产生于群体间的基因差异。3.采用11个随机引物对20个野生个体和24个养殖个体进行了RAPD群体遗传多样性分析,分别扩增出88条和86条DNA带,片段大小在200-2500bp之间,平均每个引物扩增的带数是7.8-8.0。两个群体的多态座位比例分别是43.2%和34.9%,平均杂合度是0.2739和0.2255,而Shannon遗传多样性指数表明两群体的遗传变异中有88.12%的遗传变异来自种群内,只有11.88%的变异来自群体间。遗传分化指数G_(st)的结果也验证了Shannon遗传多样性指数的结果:总群体的遗传变异中约有12%是由两群体间的基因差异产生的。4.本文对牙鲆两个群体的同一批样品分别采用经典的同工酶方法和RAPD方法进行了较系统的比较分析。发现,RAPD所显示的多态性要比同工酶的高得多,因为大部分RAPD的变异是源于非编码区和重复DNA,可以遍布整个基因组,而同工酶仅是功能基因的产物,只表现编码区的变异。因此,自然选择在同工酶编码区的作用要多于RAPD标记。在遗传相似性系数(I)和遗传距离(D)上,RAPD的分析结果与同工酶的分析结果也是有差异的,用同工酶分析两个群体遗传距离只有0.0124,而用RAPD研究可达0.0508。遗传分化指数的差异也很大,同工酶为0.0681,RAPD为0.1237。5.RAPD和同工酶的分析结果是类似的,即自然群体的多态座位比例和平均杂合度要比养殖群体高,降低幅度在同工酶中界于1.7~22.3%之间,在RAPD中则界于15.9~19.2%之间。这充分证明了养殖群体的遗传多样性水平已有明显的丧失,值得我们注意。6.构建了鲽形目鱼类mtDNA 16S rRNA基因的分子系统树。通过分子克隆法将牙鲆、桂皮斑鲆、大菱鲆和石鲽mtDNA 16S rRNA目的基因片段连接到质粒载体上,经MegaBACE测序仪测序,分别获得了590、595、582和590bp序列,通过生物信息学方法对其进行了序列分析和核酸变异比较,结合NCBI上6种鲽形目鱼类的同源序列探讨了这4种鱼类在鲽形目中的遗传分化和分子系统进化,构建了系统树,其中,桂皮斑鲆的16S rRNA基因在系统树中的位置与物种形态资料的系统演化不相符,而其它三种很好地呈现了它们在鲽形目中的系统位置。同时,可以看出mtDNA 16S rRNA基因片段可以构建一个相对准确的树,特别是NJ树和ML树比较接近,更为客观一些。由比对序列获得的物种之间的遗传距离也基本可以反映种、属、科间的不同变异水平。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

近几十年来,国内沿海地区频繁发生食用织纹螺中毒事件,并导致数十人死亡,这一问题得到了政府相关部门的高度重视。但是,由于织纹螺毒性变化很大,毒素来源不清楚,因此很难预测食用织纹螺中毒事件的发生,这在很大程度上限制了对食用织纹螺中毒事件的有效监测和管理。目前,对于中国沿海有毒织纹螺体内河豚毒素(tetrodotoxin, TTX)的来源还未见过系统研究。本文选取中国沿海常见的半褶织纹螺(Nassarius semiplicatus)、纵肋织纹螺(N. variciferus)和拟半褶织纹螺(N. semiplicatoides sp. nov.)作为实验对象,从毒素的微生物来源与食物链来源这两个角度分别展开研究,以探讨织纹螺体内 TTX 的可能来源,为提出相应的预防管理措施提供科学依据。 首先,我们先后从曾发生过中毒事件的江苏盐城和连云港采集了织纹螺样品,通过小鼠生物测试法和液-质联用分析技术(LC-MS),对织纹螺的毒性和毒素组成进行了测试和分析,分离培养了织纹螺体内及其生活环境中的细菌,应用河豚毒素单克隆抗体酶联免疫检测方法(ELISA)对细菌的产毒情况进行了测试,并通过 16S 核糖体(rRNA)部分基因序列测定对细菌种类进行了初步的分析。研究发现,采自江苏盐城和连云港的半褶织纹螺的毒性分别约为 2 MU/g 和 200 MU/g 组织,体内的毒素成分是河豚毒素及其同系物。从盐城的半褶织纹螺及其生活环境分离的菌株中随机挑出 14 个菌株中,9 个菌株河豚毒素检测结果呈现阳性。从连云港高毒性半褶织纹螺消化腺中分离到的 45 个菌株中,阳性菌株有 21 个。但是,有毒菌株毒素含量较低,毒素含量范围是 15-184ng/g。通过 16S rDNA 部分序列的测序结果发现,大部分有毒菌株与弧菌属(Vibrio)的细菌在遗传序列信息上比较相近。其余有毒菌株分别与希瓦氏菌属(Shewanella)、海单胞菌属(Marinomonas)、黄杆菌属(Tenacibaculum)、动性菌属(Planococcus)、发光杆菌属 (Photobacterium)和气单胞菌属(Aeromonas)的遗传序列比较相近。其中与海单胞菌属、动性菌属和发光杆菌属亲缘关系较近的产毒细菌是首次报道。这一研究表明织纹螺体内及其生活环境中的存在产河豚毒素的细菌,但由于产毒素的量较低,因此可能在织纹螺体内河豚毒素的产生和累积过程并不发挥主要作用。 织纹螺作为一类腐食性的海洋动物,也有可能通过进食含有河豚毒素的生物而累积河豚毒素。对此,我们开展了高毒性半褶织纹螺的室内培养实验,以及河豚毒素在不同种类织纹螺体内的累积和排出的模拟实验,并定期采样,通过液相色谱与串联质谱联用技术(LC-MS/MS)对织纹螺体内河豚毒素及其同系物的含量变化情况进行了分析。室内培养实验发现,从连云港赣榆县采集的高毒性半褶织纹螺,在实验初期,体内毒素含量呈下降的趋势,但从 7月上旬开始,毒素含量突然快速上升,与连云港赣榆县野外采集的织纹螺的毒素含量表现出相似的变化趋势。河豚毒素在不同种织纹螺体内的累积和排出的模拟实验发现,通过投喂高毒性的河豚鱼肝脏(毒性为5×103 MU/g),纵肋织纹螺在一段时间内能够快速累积少量的河豚毒素。当停止投喂有毒河豚鱼肝脏后,毒素含量会快速下降。而在曾导致中毒事件的拟半褶织纹螺中,投喂有毒河豚鱼的肝脏后,其体内毒素含量只有缓慢增加。但在投喂无毒的河豚鱼肝脏后,其毒性却出现了快速增加的现象,这与该地区野外样品的毒性变动状况类似。这些发现显示高毒性半褶、拟半褶织纹螺体内的河豚毒素应当不是食物链累积的结果,而可能是由其自身产生。并且,毒素含量的变化具有一定的生物节律,有可能与产卵、繁殖等自然节律相关。 通过对半褶、纵肋和拟半褶织纹螺的研究工作可以认为,产河豚毒素的细菌不是织纹螺体内河豚毒素的主要来源,并且毒素也不是来自其摄食的食物,推测可能主要是由织纹螺自身产生。织纹螺所表现出的河豚毒素含量的季节性变化,极有可能与产卵、繁殖等自然节律相关,这些发现为预防和管理食用织纹螺中毒事件提供了科学依据。但是,本研究并未完全阐明织纹螺体内河豚毒素的来源,对于织纹螺体内河豚毒素的确切来源以及河豚毒素的代谢和转化机制,还有待于更加深入地研究工作。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为研究鄂霍次克海天然气水合物区沉积物古菌、甲烷厌氧氧化古菌和硫酸盐还原细菌的多样性分布,我们以PCR技术为基础构建mcrA、dsrAB和古菌16S rRNA 基因文库。对所获得的序列进行系统进化和统计学分析发现:鄂霍次克海古菌类群主要为Marine Benthic Group D (MBG-D)、Marine Benthic Group B (MBG-B)、Marine Crenarchaeotic Group I(MG- I),另外少量古菌16S rRNA基因序列为Anaerobic Methanotrophs 2c(ANME-2c),主要分布在LV39-25H岩心的表层沉积物中。LV39-40H岩心表层的古菌群落结构与其他六个层位古菌群落结构相比有着显著的差异。mcrA基因序列主要为催化甲烷厌氧氧化的古菌ANME-2(c和d簇),在所研究的各个层位的沉积物中均广泛分布。少量的ANME-1(a簇)发现于LV39-40H岩心表层以下的沉积物中。产甲烷古菌数目不多,集中分布在LV39-25H岩心200cm和LV39-40H岩心180cm的沉积物中。dsrAB基因文库分析表明硫酸盐还原细菌种类丰富,表层沉积物中硫酸盐还原细菌多样性最高。在两个岩心所有层位的沉积物中都有一定数量的克隆属于DSS簇,它们可能与ANME共生催化甲烷的厌氧氧化作用。总之,所有数据表明在鄂霍次克海天然气水合物区存在着较活跃的甲烷厌氧氧化作用,揭示了参与甲烷厌氧氧化作用的微生物群落结构和多样性。 为研究东海内陆架闽浙沿岸泥质区不同深度沉积物中古菌群落垂向分布特征,通过古菌16S rRNA 基因文库共得到473个有效克隆50个OTUs (Operational Taxonomic Units)。16S rRNA基因序列系统进化和统计分析发现古菌分别归属于泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota),其中以Miscellaneous Crenarchaeotic Group(MCG)为主,仅含少量的MBG-B、South African Gold Mine Euryarchaeotic Group(SAGMEG)、 ANME-3、MG- I和MBG-D。该泥质区沉积物可能存在由ANME-3催化的甲烷厌氧氧化作用,同源序列分析表明其古菌群落分布与周边环境有较大联系。UniFrac与沉积物环境因子分析表明该泥质区古菌群落垂向分布与沉积物有机质含量和粒度变化密切相关。 通过对比发现,鄂霍次克海天然气水合物区甲烷厌氧氧化古菌主要为ANME-2和少量的ANME-1,而东海内陆架泥质区甲烷厌氧氧化古菌仅为极少量的ANME-3;鄂霍次克海天然气水合物区广古生菌和泉古生菌数量各占一半,主要为MBG-D、MBG-B、MG-I。东海内陆架泥质区沉积物古菌序列主要为泉古生菌(MCG)。海域类型的不同以及有机碳含量等环境因子的差异可能是这两个海域古菌群落结构差异的主要原因.