81 resultados para 144-871C


Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过有性繁殖转移人生长激素基因鲤鱼(P_1),获得了转基因鲤鱼的子一代(F_1)和子二代(F_2);外源基因在转基因P_1与普通鲤鱼杂交产生的F_1代和转基因F_1代自交产生的F_2代鱼中的存在率分别为45.4%和66.7%;外源基因拷贝数在子代个体之间存在很大差异,从每细胞2拷贝到每细胞200拷贝不等;外源基因在转基因鱼子代中仍可表达具有生物功能的产物,人生长激素(hGH),并能促进鱼的生长。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

据笔者记录湖北省现有鱼类12目25科106属201种和亚种,其中以鲤科鱼类的东亚地理类群为主。由于湖北省北部、西部和西南部分别受黄河、长江上游、珠江水系的影响,地处南北交错地带,因此,其鱼类区系成分复杂多样,地理分布具有明显的地域性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正> 一、引言氢离子浓度(pH值)的变化对于水生生物,特别是鱼类的生活常常被认为是直接或间接发生影响的因子之一。1920年,M.E.Jewell氏开始注意到水质的氢离子浓度变化对于两栖类蝌蚪代谢和再生作用的影响,他发现最适宜的氢离子浓度是中性或接近中性,同时发现再生率和再生总量和水中溶氧含量有密切关系。E.B.Power氏(1922)开始注意到氢离子浓度与鱼类呼吸生理之间的关系。此后,有许多学者研究了氢离子浓度对鱼类耗氧率的影响,以及氢离子浓度对鱼类从水中吸取溶氧机能的影响。其中

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the immunoglobulin M heavy chain gene of European eel (Anguilla anguilla) was cloned and analyzed. The full-length cDNA of the IgM heavy chain gene (GenBank accession no. EF062515) has 2089 nucleotides encoding a putative protein of 581 amino acids. The IgM heavy chain was composed of leader peptide (L), variable domain (VH), CH1, CH2. Hinge, CH3, CH4, and C-terminus and two novel continuous putative N-glycosylation sites were found close to the second cysteine of CH3 in A. anguilla-H1 and A. anguilla-H2. The deduced amino acid sequence of the European eel IgM heavy chain constant region shared similarities to that of the Ladyfish (Elops saurus). Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), Grass carp (Ctenopharingodon idella), Common carp (Cyprinus carpio), Channel catfish (Ictalurus punctatus), and the orange-spotted grouper (Epinephelus coioides) with the identity of 46.1%, 39.7%, 38.9%, 32.4%, 32.3%, 31.7%, and 30.7%, respectively. The highest level of IgM gene expression was observed in the kidney, followed by the spleen, gills, liver, muscle and heart in the apparently healthy European eels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transgenic animals with improved qualities have the potential to upset the ecological balance of a natural environment. We investigated metabolic rates of 'all-fish' growth hormone (GH) transgenic common carp under routine conditions and during starvation periods to determine whether energy stores in transgenic fish would deplete faster than controls during natural periods of starvation. Before the oxygen uptake was measured, the mean daily feed intake of transgenic carp was 2.12 times greater than control fish during 4 days of feeding. The average oxygen uptake of GH transgenic fish was 1.32 times greater than control fish within 96 h of starvation, but was not significantly different from controls between 96 and 144 h of starvation. At the same time, GH transgenic fish did not deplete energy reserves at a faster rate than did the controls, as the carcass energy contents of the two groups following a 60-d starvation period were not significantly different. Consequently, we suggest that increased routine oxygen uptake in GH transgenic common carp over that of control fish may be mainly due to the effects of feeding, and not to an increase in basal metabolism. GH transgenic fish are similar to controls in the regulation of metabolism to normally distribute energy reserves during starvation. (c) 2008 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many unicellular green algae can become yellow or red in various natural habitats due to mass accumulation of a secondary carotenoid, such as lutein, or astaxanthin. The accumulation of secondary carotenoids is generally thought to be a survival strategy of the algae under photo-oxidative stress or other adverse environmental conditions. The physiological role of the carotenoids in stress response is less well understood at the subcellular or molecular level. In this study, a stable astaxanthin overproduction mutant (MT 2877) was isolated by chemical mutagenesis of a wild type (WT) of the green microalga Haematococcus pluvialis Flotow NIES-144. MT 2877 was identical to the WT with respect to morphology, pigment composition, and growth kinetics during the early vegetative stage of the life cycle. However, it had the ability to synthesize and accumulate about twice the astaxanthin content of the WT under high light, or under high light in the presence of excess amounts of ferrous sulphate and sodium acetate. Under stress, the mutant exhibited higher photosynthetic activities than the WT, based on considerably higher chlorophyll fluorescence induction, chlorophyll autofluorescence intensities, and oxygen evolution rates. Cell mortality caused by stress was reduced by half in the mutant culture compared with the WT. Enhanced protection of the mutant against stress is attributed to its accelerated carotenogenesis and accumulation of astaxanthin. Our results suggest that MT 2877, or other astaxanthin overproduction Haematococcus mutants, may offer dual benefits, as compared with the wild type, by increasing cellular astaxanthin content while reducing cell mortality during stress-induced carotenogenesis.