924 resultados para 863
Resumo:
机器人学是电子、机械、控制等学科相结合的产物,代表着机电一体化的最高成就。随着社会经济与科技水平的发展,各个领域对仿人机器人的需求不断增加,使得仿人机器人成为了当今机器人研究中的热点。 按照移动方式,仿人机器人可以分为双足步行和轮式移动仿人机器人。轮式移动仿人机器人尤其适用于具有部分不变场景的结构化环境,在医院、餐厅等服务场合有着广泛的应用前景。 目前对于仿人机器人的研究主要还停留在样机阶段,在系统集成与实现方面所做的研究工作还不是很多。为此,本文以863课题《宜人化双臂操作型服务机器人》为依托,在分析了仿人机器人的特点以及国内外的研究现状的基础上,系统地研究了轮式移动仿人服务型机器人的系统集成与实现的相关问题,如:各个子系统的实现,体系结构的设计与实现,操作臂的冗余度控制,各种传感器信息的融合与切换等问题,最后通过具体的操作实验验证了设计的有效性和系统的可靠性。 首先,介绍了仿人机器人的子系统的划分与各个子系统的实现。在机械子系统中,介绍了仿人机器人各个部分的构成与实现,并总结了该仿人机器人机械结构具有的特点。在控制子系统中,根据该仿人机器人的要求,提出了基于微控制器的关节控制器的设计方法,叙述了控制器的硬件结构与实现;利用CAN总线的特性,构建了基于CAN总线的分布式控制系统;编写了伺服控制程序,开发了适于本系统的CAN总线的应用层协议。另外介绍了传感、通讯、电源等子系统的实现方式和特点。 其次,在分析现有的几类体系结构的特点的基础上,针对本系统中仿人机器人的功能要求,提出了层次化与模块化相结合的体系结构。该结构以时间为标准在纵向分为3层,以功能为标准在横向分为3列。描述了各个层次的结构和功能。在任务层,操作者通过无线局域网对机器人的运行状态进行监控,并可对机器人下达语音指令;在行为层,各个计算机通过局域网相连,通过对动作层的操作,实现行为的生成与组织;在动作层,构建以CAN总线为基础的分布式控制系统。本系统的体系结构具有如下的特点:自主与监控相结合,动作与感知相结合的行为,参数化的行为描述,在动作层构成分布式系统并且具有一定程度的开放性。 再次,分析了当前两类主要的冗余度控制方法的特点,并且提出了基于轨迹特征的运动权重设定准则。利用这个准则可以定量的确定操作臂各个关节的运动权重,进而用构形控制的方法实现了操作臂的冗余度控制。仿真结果证明了这种基于轨迹特征的控制方法对于冗余度操作臂的控制是合理有效的。 最后,探讨基于多传感器的任务规划与行为控制。在描述视觉系统的结构与功能的基础上,以一个具体操作任务为例,阐述了如何把位置、视觉、力觉等多种传感器集成在一起,在任务的不同阶段调度进行任务规划与行为控制。通过仿人机器人的操作实验验证了仿人机器人实时性好、定位精度高、运行稳定可靠。
Resumo:
输电线路巡检机器人是一种特种作业机器人,具有广阔的输电线路巡检的应用背景,该项研究是机器人学研究领域的前沿课题之一,而越障机构又是巡检机器人的关键技术之一。本文在863课题《超高压输电线路巡检机器人》的资助下,系统地研究了输电线路巡检机器人的移动越障机构及其理论建模,目的是分析综合越障巡检机构,研制新型的越障巡检机构;通过结构优化减小能耗提高机器人巡检线路的实用性。 本文首先系统研究了巡检作业的典型工况,建立巡检目标障碍空间的数学模型,为巡检机器人的越障巡检机构研究与越障规划奠定基础。 第二、建立特殊工况下的设计原则,研究越障巡检机构的分析与综合方法。1、提出一种基于障碍空间分析的越障巡检机构综合方法,在分析多种越障机构的越障原理与越障性能的基础上,基于螺旋理论进行越障巡检机构的型综合与数综合,优化越障巡检机构的自由度与构型,并且设计两种新型越障巡检机构。2、用影响系数法,建立机器人运动学模型,探讨越障巡检机构的运动综合。3、提出线上操作的打滑稳定裕度与摆动稳定裕度,且给出相应的判据。在建立静力学与动力学模型、探讨越障巡检机构的动力性能、分析操作手夹持姿态的稳定性的基础上,拓展夹持稳定性量度,提出打滑裕度与摆动裕度。 第三、建立特殊风载荷工况下,结构参数受风向和风压影响的数学模型,得到不同风荷载的风压对尺寸参数的影响;由风载荷影响操作手夹持稳定性,从而影响行走轮包角参数,分析得到相应的行走轮外缘包络包角范围。根据风荷载阻力与尺寸参数的关系,基于最小能量理论采用积分有限元分析,对机器人的重要零件与部件进行了结构参数优化。 第四、根据环境模型制定越障流程;分析越障过程的三个难点:机构平衡、导线辨识与定位可知,导线定位是越障的关键;并就如何定位导线的越障关键问题,提出一种解析定位方法,对比搜索定位方法可知,解析定位方法优于搜索定位方法。 第五、通过实验验证越障原理、越障规划、定位方法、及系统性能等。在调试和考机合格的基础上,分别在实验环境下验证了线上行走巡检原理的有效性和连续越障的可行性;在野外现场实验验证了越障巡检机器人系统的原理可靠性与越障定位的有效性。
Resumo:
近十年来人们对专用爬壁机器人领域的研究越来越感兴趣。如清洗高层建筑、石油气罐的喷漆喷砂、核工业设施的检测维护、援助消防和营救工作以及危险环境的远程监控等都急需一种自动化设备。爬壁机器人, 因其可以吸附墙壁表面和携带适当的传感器或工具,是这些工作的最佳候选。 本文中设计了一种反恐侦察爬壁机器人系统。在反恐侦察中,将微小型爬壁机器人上安装无线摄像头、麦克风等装置,代替侦察人员探测狭小空间内部的敌情,不但能提高侦察的准确度,还能增强安全性,减小人员伤亡。针对这一应用背景,国家863 计划提供资金开展了反恐侦察爬壁机器人样机系统的研制项目。 这种侦察爬壁机器人样机采用了两足式结构和欠驱动机构设计,使得机器人具有灵活的运动能力和多种运动方式。该机器人可以壁面爬行、穿越管道和跨越交叉面。两个有力的吸盘足依靠真空泵抽取吸盘内气体来实现吸附墙面。欠驱动机构减少了电机数量,使得机器人尺寸、重量和功耗都较小,但却对控制增加了挑战。机器人运动学方程被求出,这有助于我们理解其运动机理。 机器人上有无线遥控和无线视频传输系统分别负责接收指令和采集图像信息。针对该爬壁机器人在体积,重量,功耗和速度上的要求,本文提出了以TI公司的TMS320F2812DSP 为控制芯片的嵌入式控制系统的设计方案, 控制器的主要功能是实现多电机实时控制,搭建高效可靠的人机通讯和机器人运动规划。层次较高的操作指令采用有限状态机理论实现跟踪机器人运动状态。 电机的伺服控制,是整个控制系统设计中最基本、最重要的部分。对此本文提出了梯形速度规划和PID 控制策略,经过参数优化,基本达到了控制精度的要求。 最后,通过实验验证了机器人高效的能力,表明侦察爬壁机器人样机系统具备了执行反恐侦察的基本功能。
Resumo:
西方国家早在20世纪60年代就开始采用防暴机器人处理爆炸物。自从9.11事件后,国际社会恐怖活动更是愈演愈烈,许多国家相继对此给予了高度重视。反恐防暴机器人可应用于核工业、军事、燃化、铁路、公安、武警等部门,代替人在危险、恶劣、有害环境中执行探查、排除或销毁爆炸物、消防、抢救人质以及与恐怖分子对抗等任务。本项目依托课题由最初的“危险作业机器人”到现在的“反恐防暴机器人的产业化研究”,由国家“863”计划资金滚动支持。就现有的反恐防暴机器人,存在速度较慢或机动灵活性不强或可靠性不高等不足,现研究出一种新型反恐防暴机器人,目的是在保证适应一定的非结构环境的前提下(适用所有的非结构环境的移动机构设计是不可取的,也是不现实的),提高机器人本体转向性能和移动速度,降低功耗,机构简单化,同时在硬件与软件设计时采取一些相应的措施,提高其在实际应用环境中的可靠性和抗干扰能力。首先,通过对以往反恐防暴机器人在非结构环境中采用的复合移动机构对比分析研究,提出了一种新型的轮-履带-腿复合移动机构,应用在”灵豹”机器人上。它的特色是移动机构继承了“灵蜥”系列反恐防暴机器人轮与履带移动方式自动切换功能,并且针对“灵蜥”系列机器人轮式移动时,四轮滑动转向灵活性不高、功耗大的问题,提出了三轮式移动机构,在狭小移动空间有着广泛的应用。并对该机器人本体做了运动学分析和稳定性分析,论证了该机构的可行性。其次,根据课题项目研究的需要,在控制方面,主要完成了“灵狐”小型反恐防暴机器人的系统构建与功能实现。通过从事“灵蜥”系列机器人项目开发,积累了一些移动机构设计与分析以及控制系统一些问题解决的实际经验,在“灵狐”控制系统设计过程中,由于采用单片机作为微控制单元,因此着重考虑了提高系统可靠性与抗干扰能力。在“灵狐”机器人样机试验中取得了好的效果,均达到预期目标。
Resumo:
本论文的研究内容是围绕国家“863”计划支持项目“基于探测机器人技术的反恐立体侦察监控示范系统”(编号:2004AA420110)和“微小型反恐侦察移动平台和探测关键技术研究”(编号:2005AA420230)展开的。研究工作以微小型壁面移动机器人的研制为实际背景,主要包括以下五个方面的内容:⑴ 机器人的运动学、动力学分析和控制系统设计;⑵ 机器人的运动步态分析;⑶ 机器人在狭窄空间中的运动规划方法研究,以及在壁面过渡时的运动规划方法研究;⑷ 欠平滑壁面上机器人的自主行为控制和针对动力学特性的重力补偿控制研究;⑸ 论文所提出方法的仿真分析和实验研究。 第一,介绍了微小型壁面移动机器人的欠驱动机构设计和三种运动模式;分别基于D-H坐标变换和拉格朗日方法,对机器人的运动学和动力学特性进行了分析,为接下来的步态分析、运动规划和控制研究奠定了基础;开发了微小型壁面移动机器人的嵌入式DSP控制系统,为论文中的仿真和实验研究提供了物理平台。 第二,对尺蠖的生物特征和运动机制进行了简要介绍,并总结了尺蠖运动的特点;通过理论计算和实验测试,分析了微小型壁面移动机器人的步行稳定性;在机构设计和运动学建模基础上,全面地分析了微小型壁面移动机器人的各种基本步态、派生步态和壁面过渡步态,同时引入用以描述步态之间转换关系的步态算子,为后续的运动规划和控制方法研究做好了理论铺垫。 第三,分析了微小型壁面移动机器人运动规划问题的特殊性;考虑到机器人运动时真空吸附的耗时问题和狭窄空间中步态选择的合理性,通过对局部动态窗口法进行改进,引入可达空间动态局部栅格和遍历搜索算法,提出了基于可行步态的微小型壁面移动机器人在狭窄空间中的运动规划方法;根据壁面过渡的步态分析结果,并考虑到吸盘足的真空吸附载荷和机器人的动力学特性,提出了基于步态参数规划与最小能耗轨迹优化相结合的微小型壁面移动机器人在壁面过渡时的运动规划方法。通过仿真分析和实验研究,验证了上述运动规划方法的合理性和有效性。 第四,针对欠平滑壁面上机器人吸盘足吸附失败时的自主行为控制问题,根据步态分析结果,建立了吸盘足的有限状态机模型,并按“就近”原则设定状态转移优先级,提出了基于有序试探的微小型壁面移动机器人着地点选择控制方法;针对机器人的动力学特性,特别是重力矩变化对机器人运动控制的影响,在采用模糊自适应PID控制的基础上,根据轨迹优化结果,引入前馈重力补偿环节,提出了基于重力补偿的微小型壁面移动机器人模糊自适应PID控制方法。通过仿真分析和实验研究,验证了所提方法在改善系统控制性能,提高机器人自主能力方面的可行性和有效性。 第五,在武警北京特警学院的反劫机训练场,对微小型壁面移动机器人的运动控制能力和越障能力进行了现场实验测试,验证了论文所提出运动规划和控制方法在实际应用中的有效性。
Resumo:
近年来,机器人的应用越来越广泛和深入,输电线巡检机器人是当前特种作业机器人的研究热点之一,具有广泛的应用前景和实用价值。本文的研究内容是围绕国家“863”计划支持项目“500KV超高压输电线巡检机器人的研究”展开的。本研究工作针对巡检机器人的关键控制问题,主要由三部分组成:设计了巡检机器人的体系结构,并应用离散事件理论对机器人的任务、行为和动作建模;对巡检机器人双轮同步驱动控制进行了分析,并应用奇异摄动理论设计了控制器;研究了基于单目视觉的输电线立体定位方法及通过视觉伺服完成机器人自主抓线控制。 第一,介绍了巡检机器人的作业环境,重点探讨了机器人机械系统和控制系统的设计与实现。在机械子系统中,详细介绍了巡检机器人的机构实现与越障方法。在控制系统中详细阐述了基于分层递阶的机器人控制系统硬件组成。另外介绍了供电系统、无线传输系统、传感系统的设计与实现。分析了输电线路周围的电磁环境,及其对机器人的影响,并根据分析结果完成了对机器人的电磁防护设计。 第二,开展了输电线巡检机器人体系结构及人机交互系统研究,针对巡检机器人工作特点设计了基于规划和感知行为的混合式体系结构。针对巡检机器人工作环境设计了以机器人为中心的人机交互方式。参考前人建立的离散事件动力系统的层次结构和并行结构,提出了顺序结构并证明了其无阻塞性、可控性和监控器存在性,并结合以上三种结构建立了巡检机器人作业行为的离散动力学模型,分别获得了任务层、行为层和动作层的监控器。 第三,进行了巡检机器人双轮驱动控制研究。巡检机器人双轮行走机构为过驱动系统,对双轮行走系统进行了运动学和动力学建模,将一行走轮设为主动轮另一行走轮设为从动轮。针对两行走轮之间弹性关节导致的控制中的振荡问题,采用奇异摄动理论将系统分为快慢两个子系统;针对巡检机器人系统参数的时变性采用PD自适应算法设计了慢系统控制器;应用最优控制理论设计了快系统控制器。仿真结果验证了该方法的有效性。 第四,进行了输电线视觉定位和视觉伺服抓线问题的研究。输电线巡检机器人的自主越障控制是实现机器人实用化的关键问题。为实现巡检机器人自主越障,采用视觉伺服控制机械手臂自动抓线。为提取输电线图像特征点,针对输电线投影图像特征改进了边缘提取算法,应用聚类算法提取了输电线上的像素点。提出在机械手运动过程中采用EKF(扩展卡尔曼滤波)来实现对输电线的立体定位。在分析了当前基于图像的视觉伺服研究现状,建立了基于图像雅克比矩阵的输电线视觉伺服抓线模型。针对非标定状况下图像雅可比矩阵中的不确定参数,应用I&I(Immersion Invariant)自适应算法来实现无标定图像视觉伺服。针对机器人的动力学不确定性,设计了模糊自适应控制器,并证明了稳定性。仿真验证该方法的有效性,实验验证了基于视觉伺服的抓线控制的有效性。
Resumo:
蛇具有细长无肢的身体、独特的半球形关节,使其可在神经系统控制下完成与环境相适应的多种节律运动。模仿蛇的运动机理和行为方式而设计的蛇形机器人克服了轮腿式机器人的缺点,增加了机器人的运动方式,扩大了机器人的应用范围。但应用传统的控制策略实现蛇形机器人运动控制遇到了很难克服的问题。随着社会经济与科技的发展,研究人员把从蛇运动神经系统研究中得到的启示应用到蛇形机器人上,希望不仅可以解决其运动控制问题,更能在构型、步态及控制机制上皆可展示蛇的特征。 生物学家已经证明动物的节律运动是其低级神经中枢的自激行为,是由中枢模式发生器(Central Pattern Generator,CPG)控制的。中枢模式发生器是一种能够在缺乏有规律的感知和中枢控制输入的情况下,产生有节奏模式输出的神经网络。 本文以国家自然科学基金课题《基于CPG的蛇形机器人控制方法研究》和国家“863”高技术计划资助项目《具有环境适应能力的蛇形机器人的研究》为依托,突破以相互抑制机理研究CPG的传统观点,首次创新性地提出应用循环抑制(Cyclic Inhibition, CI)机理来研究蛇形机器人的CPG建模与实现问题。本研究涵概了神经元模型的特性分析、蛇形机器人关节循环抑制CPG建模理论、蛇形机器人循环抑制CPG神经网络稳定性分析以及典型步态的生成方法、循环抑制CPG神经网络控制蛇形机器人蜿蜒运动参数设定策略、应用动力学仿真和实验对该CPG控制方法有效性的验证。 首先,本文介绍了两个用于CPG建模研究的蛇形机器人“勘查者”和“勘查者-I”。给出各自机械系统、控制系统的构成和动力学仿真平台。 其次,详细分析了神经元以及传统的相互抑制(Mutual Inhibition, MI)CPG的特性。从工程角度首次创新性地应用循环抑制建模理论构建了蛇形机器人CPG模型,并对其稳定性进行了深入的分析。首次证明持续型神经元构成的单向循环抑制(Unilateral Cyclic Inhibition, UCI) CPG是能产生振荡输出CPG中微分方程数量最少的,而且其产生振荡输出的机理完全不同于传统的相互抑制CPG。其不需要具备调整功能,只需要神经元之间强的单向循环抑制连接。 第三,首次应用单向激励连接循环抑制CPG构成蛇形机器人神经网络系统。分析了其稳定性,给出其产生振荡输出的条件。通过仿真和实验验证了循环抑制CPG神经网络实现典型步态(蜿蜒运动、伸缩运动和侧向运动)的有效性。首次应用双向循环抑制(Bidirectional Cyclic Inhibition, BCI)CPG神经网络在不同高级控制神经元命令激活下的输出实现蛇形机器人典型运动步态之间的转换。为蛇节律运动生成机制建模提供了新方法。 最后,从实时性、控制方便性等工程应用的角度,对单向循环抑制CPG神经网络实现蛇形机器人蜿蜒运动控制进行了深入的分析。给出了S-波形、幅值、运动速度和运动轨迹曲率的参数设定策略。该系统应用首CPG自激励权重调解成功解决了传统CPG控制系统中CPG的个数比蛇形机器人关节数多一个的问题,并用其实现了一种独特的转弯控制策略。 综上,为蛇形机器人运动控制提供了全新的方法。
Resumo:
可重构机器人顺应从结构环境下定点作业向非结构环境下自主作业的发展要求,能够更好的应用到环境复杂、危险性高、人类无法进入的场合完成作业。可重构机器人技术的发展拓展了机器人的应用空间,使其在星球探测、灾难救援、军事领域等方面均有良好的应用前景。因此,可重构和模块化机器人系统的研究成为机器人研究领域的热点问题。本论文的研究内容是围绕“863”计划项目“可重构星球探测机器人的研究”展开的。立足于可重构和模块化中的关键技术,针对一种新型可重构轮手一体机器人的控制及其群体构形理论进行深入的研究。研究内容主要包括模块化分布式控制系统、机器人群体体系结构、群体构形的表达和变换、构形重构优化和构形运动规划等。为了实现可重构轮手一体机器人的多关节机械臂、手爪、轮体的协调作业,实现控制的独立性、实时性,提出基于分布式控制器和CAN总线的模块化控制结构。以功能为划分依据,将控制系统分解成具有不同功能、由独立控制器执行的模块化子系统;采用分布式控制方法,使各子系统独立、同步地执行对应任务。在规划控制子系统和运算子系统中(即两个独立的控制器中)分别执行正向运动学运算和逆向运动学运算,实现轨迹规划的分布式计算。对不同控制结构和控制方法中的系统时序进行分析和对比,结果表明模块化分布式控制结构和分布式计算方法在系统执行时间方面具有性能优势。通过仿真系统和功能样机实验对模块化分布式控制系统和分布式控制方法进行验证。针对可重构轮手一体机器人群体中存在单个机器人和构形两种运动单元的特点,提出具有动态层次结构、融合构形控制和协作控制的体系结构,具有层次动态化与控制功能模块化的特性。以控制目标为依据,将体系结构分为三层:群体控制层、构形控制层和模块控制层。根据群体系统中作为控制目标的运动单元的形式,动态地改变层次结构及其功能,实现构形控制、多机器人协作控制、机器人运动独立控制。针对可重构机器人重构目的,提出矢量构形概念,将构形研究内容扩展到不但包括构形的拓扑结构,也包含构形的运动趋势方向和组成构形的各模块的姿态方位及连接关系。针对现有构形表达方法对可重构轮手一体机器人这类独立操作型模块、模块间具有多关节连杆的可重构机器人构形表达的局限性,创新性地提出基于模块状态向量MSV(Module State Vector)和构形状态矩阵CSM(Configuration State Matrix)方法,实现该类可重构机器人构形的表达和变换。模块状态向量和构形状态矩阵中每个值都对应机器人模块或群体构形的某种状态信息,具有无冗余数据、所需存储空间较小等特点。并且这种方法支持变换运算和操作,根据变换规则和数学变换可以表达、触发模块的行为运动和构形的重构。根据重构对象的初始状态,将构形重构分成组合重构和变换重构两类。基于模块状态向量和构形状态矩阵,提出以工作负荷为优化目标的构形组合重构优化算法、以姿态方位工作负荷和连接工作负荷的组合为优化目标的变换重构优化算法,通过重构优化结果获得模块在构形重构中状态对应变换关系,作为构形重构规划的基础。针对构形重构中的模块状态变换,提出基于最小能耗的模块机械臂关节运动顺序规划方法,通过机械臂转动的能量损耗计算,选择能量功耗最低时的机械臂关节运动顺序作为规划结果。提出融合时序关系的行为树,采用改进深度优先搜索算法遍历行为树获得构形运动或重构的行为运动序列和时序关系;构建语义逻辑系统实现参数化的构形运动行为及其时序的描述。采用仿真计算和机器人仿真系统对机器人重构和运动的优化、规划方法进行演示和验证。
Resumo:
随着移动机器人应用范围的日益扩展,在动态、非结构环境下提高自主行为能力已经成为移动机器人研究领域的首要问题。本文以“863”高技术计划资助项目“复合机构移动机器人构型在线优化及控制共性技术研究”为依托,以沈阳自动化研究所自主研发的“模块化便携式履带式移动机器人”为实验平台,针对实时非线性在线估计共性方法及其在移动机器人行为环境的自主建模及环境适应运动控制等方面的引用,展开深入研究,旨在提高移动机器人对动态、非结构环境的适应能力。本论文的主要内容如下:首先,研究了二维环境下移动机器人的滑动效应建模问题。将滑动效应表达为三个时变的滑动参数,建立起带滑动参数的移动机器人运动学和动力学模型,探讨了运动模型的能控性和能观性,并结合动力学分析对侧滑参数的深层机制进行了分析。本研究内容为后续估计和控制问题的验证提供了仿真对象。其次,介绍了四种非线性在线估计共性方法,即基于线性化理论的EKF估计方法、基于无色变换的UKF估计方法、基于UKF重要性采样的UPF估计方法和基于未知但有界噪声假设的ESMF估计方法,建立了具有一般性的移动机器人在线建模结构;针对上述四种估计方法在移动机器人在线建模方面的应用进行了分析和比较研究,重点强调了保边界集员估计方法独有的优势。第三,针对ESMF估计方法本身存在的数值稳定性差、时间复杂度高以及滤波器参数难于选择的缺点,提出了基于UD分解的自适应扩展集员估计方法,将包络矩阵UD分解、观测序列更新和选择更新、滤波器参数的次优自适应选择三种策略结合起来,以提高ESMF的实时性和鲁棒性,针对滑动参数估计的仿真结果表明了所提方法的有效性。第四,针对两类带有参数不确定性的移动机器人控制问题,提出了在线估计与控制相结合的方法。其一是带未知时变滑动参数的移动机器人跟踪控制问题,采用非线性估计方法对未知参数进行在线估计,并结合动态反馈线性化和PD控制律两种控制策略,以达到全局指数跟踪的收敛结果。其二是带滑动参数和几何参数等混合不确定性的移动机器人点镇定控制问题,采用state scaling和back-stepping方法,对参数未知但有界的情形获得了全局指数收敛的点镇定结果。最后,对三维情况下移动机器人周边地形环境的在线建模问题进行了研究。采用数字高程网格地图表达地形环境,介绍了基于高斯和模型的地形估计方法。针对高斯和模型本身近似条件所引起的应用困难和精度较差的缺点,提出了基于区间集员估计理论的地形环境模型估计方法,避免了高斯和估计方法中存在的大量近似条件,改善了地形估计性能,并可获得地形的保证边界估计信息,为机器人的运动控制和构型调整提供必需的先验知识。仿真和实验研究均证明了集员地形估计方法相对于高斯和地形估计方法的优越性。
Resumo:
本文以反恐侦查为应用背景,以国家“863”计划支持项目 “微小型爬壁机器人系统样机的研制” (编号:2005AA420230)为依托,在两足尺蠖式微小型爬壁机器人研究的基础上,针对微小型爬壁机器人的机构与控制的难点问题,提出了新型的爬壁机器人机构并设计了机器人的硬件控制系统。本文主要包括以下五方面的研究工作:1.提出了一种新型的轮足复合式爬壁机器人机构,对机器人的机构进行了分析与综合;2.推导了机器人的运动学方程,分析了机器人的移动与越障机理,仿真分析了机器人的移动与越障性能;3.针对控制系统功能模块化的要求,设计了基于DSP与CPLD的硬件控制系统;4. CPLD的硬件逻辑功能设计,实现了控制系统软件功能的硬件化;5. 轮足复合式爬壁机器人系统样机的实验研究。 一、在腿足式和轮式爬壁机器人研究的基础上,基于行星轮系运动及双足真空吸附原理,提出了一种新型轮足复合式爬壁机器人机构;针对机器人功能要求,对机器人的机构进行了设计与分析研究,机器人的运动关节采用非对称设计,将运动与姿态调整复合,减少了运动关节数,结构紧凑。 二、基于D-H坐标变换方法对机器人的运动学特性进行了分析,在此基础上分析了机器人的移动及越障机理,即直线行走、平面旋转和交叉壁面的跨越分析;分析了外角交叉面跨越过程中机器人距离交叉面的安全距离参数范围;仿真分析比较了本文提出的新型轮足复合式爬壁机器人与两足尺蠖式爬壁机器人的运动性能和越障能力。 三、针对机器人控制系统功能的模块化难点问题,设计了基于DSP与CPLD的硬件控制系统;利用CPLD中的硬件逻辑模块可重复调用的优点,方便的实现控制系统功能的扩展,实现了控制系统硬件设计的模块化;CPLD用户自定I/O引脚的功能,有利于提高控制系统硬件设计的灵活性。 四、分析了DSP采样查询方式的系统功能扩展DSP资源占用率高的问题,将原来由软件实现的功能改为在CPLD中由硬件实现,降低了DSP的资源占有率,提高了控制系统的稳定性,实现了控制系统软件功能的硬件化。 五、以新型了轮足复合式爬壁机人样机为实验平台,验证机器人移动与越障机理的理论分析与仿真分析正确性,控制系统的稳定性,以及无线通讯和图像传输的可靠性。 关键词 爬壁机器人;行星轮系;真空吸附;嵌入式控制系统
Resumo:
本文以国家“863”计划支持项目“机器人模块化体系结构设计”(编号2007AA041703)为依托,针对模块化机器人研究的难点和热点问题,在广泛调研模块化机器人国内外研究现状的基础上,研究开发了一套关节型模块化机器人样机。本文主要包括以下四方面的工作:1 模块库的建立及拓扑构型研究;2 运动学的研究;3 模块结构设计;4 实验研究。具体工作如下: 分析了模块化与重构性两个概念的区别与联系,在分析一般机电产品的库设计的基础上阐述了面向功能的模块化机器人模块划分原则。在此基础上,建立了含有五种单元模块的模块库,并对其可实现构型进行了拓扑分析。最后,从拓扑构型分析结果中挑选出了20种代表性构型,为基于任务的构型选择奠定了基础。 对关节型模块化机器人的运动学进行了研究,提出了一种新的坐标系建立方法,建立了各模块的运动学变换矩阵,采用运动旋量的指数积公式实现了正运动学分析的模块化,并推导出正运动学公式。对于逆运动学问题,根据推导出的正运动方程和微分运动学公式建立了逆运动学数学模型,并用牛顿—拉夫逊迭代法得出逆运动学迭代公式。 分析了一个六自由度关节型机器人的危险工况,从而确定了机器人运动时各关节所需的最大功率。以此为基础,确定了三种不同功率的旋转模块Rl、Rm、Rs和一个移动模块Tl,并根据功率的计算结果为各模块进行了电机和减速器等器件的选型。最后,以旋转模块Rl为例详细介绍了模块的结构设计过程。 通过软件平台的搭建,对前面章节的拓扑构型的实现及运动学算法进行了仿真验证。通过该软件平台,可以任意选择第二章分析出的拓扑构型,并可以自动生成运动学正解。后以一个六自由度构型为例进行了轨迹规划,验证了软件平台的构型选择,运动学正逆解算法等功能。该仿真中使用的插补算法,既能保证末端执行器的期望路径,又可以实现关节角的平滑过渡。
Resumo:
随着海洋科学考察和水下工程的日益增多,人类的研究趋势不断地向海洋深处发展。然而,水下环境与陆地和空间环境相比更加恶劣,对人类的威胁更大,因此水下机器人作为人的替代者,正在越来越多地在实际水下操作中应用。传统的水下机器人是采用主从遥操作控制,陆地上或母船上的操作员借助水下摄像机观察机器人的工作情况,通过主手或操纵杆操纵机器人,这种工作方式已不能满足当前水下作业的需要,所以研制具有高效率、高操作精度的水下机器人系统成为当今机器人领域的研究热点。本论文的研究内容是国家“863”高技术计划研究项目“虚拟监控遥操作水下机器人系统”的重要组成部分,以水下机器人检查海底石油钻井平台导管架焊缝的实际工作为背景,建立了一个完整的水下机器人实验系统,详细研究了虚拟遥操作控制、机器人监控控制及ROV(Remotely Operated Vehicles)模糊控制导航方法,并将这些控制方法应用到所建立的机器人系统中,完成实际操作实验。为了解决运动学逆解无解析解一类机械手的实时控制问题,本文提出一种适合于实时求解的算法--“跟踪搜索算法",并使用该算法实现了5DOF水下机械手的运动学解算和实时控制。水下机器人载体ROV的导航问题一直被研究者们关注,在水下机器人控制中占重要地位。本文提出一种模糊控制导航方法,使用统一控制模式实现ROV在3D空间的导航,避免了ROV水下导航中多模控制切换点难以确定和切换过程造成ROV波动的问题。根据对ROV和机械手运劫特征的分析,以及水下环境的先验知识,建立了机器人和水下环境的虚拟模型。为了适应机器人在非结构化环境中工作的要求,提出“交互虚攒建模”方法,在环境发生变化时,重新建立虚拟环境模型,使虚拟环境反映真实环境的变化。在此基础上,建立了一个多功能虚拟仿真平台。监控控制是目前水下机器人最好的控制方法,本论文将虚拟现实技术应用在机器人监控系统中,提出虚拟监控系统的双层结构,发展了监控思想。研究并实现了四种虚拟监控控制方法:(1)基于虚拟显示的控制方法,(2)基于虚拟视觉的控制方法,(3)虚拟层任务规划,(4)虚拟投射控制。将上述各部分集成,设计并实现了虚拟监控遥操作控制系统,以该控制系统为核心,连接真实水下机器人和视觉系统,建立了虚拟监控遥操作水下机器人实验系统。本论文提出的系统结构、虚拟建模方法、模糊导航方法,虚拟监控控制方法均应用到机器人实验系统中。实际操作结果和仿真实验结果验证了所提出的虚拟监控系统结构的合理性,方法的正确性,体现了这些结构和方法的先进性。该实验系统和上述实验结果作为“863”项目“虚拟监控遥操作水下机器人系统”的重要组成部分,通过了专家组的验收,得到专家们的肯定。此外,为了适应开展网络遥操作研究的需要,本论文基于Internet网络技术,建立了机器人的网络通讯框架,使本论文中建立的机器人系统具有网络扩展性。论文的研究工作为研制可实用的高性能水下机器人系统奠定了基础,研究成果对水下机器人遥操作具有理论指导意义,为其实际应用提供了技术实现的途径。
Resumo:
随着微电子技术、机器人技术、人工智能控制技术等向传统产业的逐步渗透,我国的工程机械行业面临着一个全新的机遇和挑战,挖掘机是其中的典型代表。为了加快产品更新换代的步伐,尽快缩小国内外产品之间的差距,国家863计划特别单列出工程机器人的研究专题。结合国家863高技术计划研究项目“挖掘机器人工作装置控制系统“,本文从挖掘机器人化的角度进行了一些有益的工作。本文从人机交互控制思想出发,阐述了对挖掘机机器人化的一种设计思想与实现途径。通过对挖掘机工作装置运动学和动力学的建模、分析以及对挖掘机工作过程的研究,提出了几种典型作业方式下,如坡面挖掘、平整土地、深坑挖掘等挖掘臂的轨迹生成和控制方法,并进行了仿真试验。为了加速研究成果向新产品开发的转化,我们以一台国产小型挖掘机WY1.3型为实验平台,在不改变其基本结构部件、发动机、液压油源和工作油缸的情况下,对其控制和操纵部分进行改造,构成挖掘机器人实验样机。样机产品具有多种工作模式,包括自动挖掘、半自动挖掘、手动作业、自动卸载等,同时可遥控操作。本论文中,还对工作装置系统的电液比例控制问题进行了理论分析。对于工作装置机构的非对称油缸,推导出当采用与之相匹配的非对称比例方向阀控制时的特性方程。分析了工作装置比例控制系统的稳定性,并且提出了系统校正和非线性补偿的方法。
Resumo:
提出了一种既能够在陆地上爬行,又能够在一定深度的水下浮游和在海底爬行的新概念轮桨腿一体化两栖机器人;多运动模式和复合移动机构是该机器人的突出特点.分析了轮桨腿复合式驱动机构的运动机理,并采用多目标优化设计理论和算法,对驱动机构的爬行性能和浮游特性进行了综合优化,得到了两栖机器人驱动机构的结构优化参数.虚拟样机的仿真结果证明了该轮桨腿一体化两栖机器人驱动机构的综合运动性能良好,对非结构环境具有一定的适应能力。
Resumo:
针对传统的分层式体系结构在UUV 控制系统开发设计、维护和升级过程中所遇到的困难,首先分析了集中式控制和管理方法的不足和原因。在此基础上,借鉴自主计算的思想,提出了分散控制和管理的体系结构。这种方法把系统中每个独立的功能模块都抽象成为具有相同模型的控制基元,称之为“自主基元”,然后通过自主基元层次式、嵌套式的组织,构成完整的系统。分析表明,这种方法能够缩短控制系统的开发周期,也降低了维护和升级的难度。