69 resultados para unfolded intermediate
Resumo:
An activated intermediate formed from H2O2 and cytochrome C is identified by direct electrochemical measurements.
Resumo:
The appearence of the new fluorescence peak at about 570 nm demonstrates exciplex formation between the singlet states of 9-vinyl anthracene and p-N, N-dimethylamino stytene. With increasing the polarity of solvents t the red-shift of the emission wavelength occurs and the fluorescence quantum yield of the exciplex decreases. For example t the fluorescence peak is at 550 nm in totuene and at 595 nm in butanone. The fluorescence quatum yields in totuene and in butanone are 0.053 and O respectively. Both the relative yield of the photocycloaddition dimer and the ratio of the relative yields of the trans and cis dimers decrease with increasing the polarity of solvents. For example, the relative yields of the dimer are 1.0 in totuene and 0.04 in butanone respectively. The ratio of the relative yields of traits and cis dimers are 0.54 and 0 in totuene and butanones t respectively. In addition, the exciplex intermediate mechanism was suggested for the photocycloaddition between 9-vinyl anthracene and 9-N, N-dimethylamino styrene.
Resumo:
The structural characterization of folded and unfolded haemoglobin has been performed by scanning tunnelling microscopy (STM) for the first time. STM images show an oval-shaped pattern for the folded structure of this protein, and moreover two dimers consisting of one haemoglobin molecule can be clearly discerned. The dimensions of a folded molecule were determined as 6.4 x 5.4 x 0.7 nm(3), which are in good agreement with the known size obtained from X-ray analysis. We have found that unfolding of haemoglobin molecules on the surface of highly oriented pyrolytic graphite (HOPG) can be achieved by electrochemical deposition. The STM analysis indicates clearly that the tertiary structure of the protein was lost by electrochemical deposition, and most of the haemoglobin molecules were almost fully extended and exhibited a twisted rope-like or a rod-like aggregated structure. Our investigation demonstrates the capability of the electrochemical method in denaturing this redox protein and in preparing stable biological samples for use in STM imaging.
Resumo:
Native and unfolded glucose oxidase (GOD) structures have been directly observed with scanning tunnelling microscopy (STM) for the first time. STM images show an opening butterfly-shaped pattern for the native GOD. When GOD molecules are extended on anodi
Resumo:
On the basis of Argo data and historic temperature/salinity data from the World Ocean Database 2001 (WOD01 origins and spreading pathways of the subsurface and intermediate water masses in the Indonesian Throughflow (ITF) region were discussed by analyzing distributions of salinity on representative isopycnal layers. Results were shown that, Subsurface water mostly comes from the North Pacific Ocean while the intermediate water originates from both the North and South Pacific Ocean, even possibly from the Indian Ocean. Spreading through tire Sulawesi Sea, the Makassar Strait, and the Flores Sea, the North Pacific subsurface water and the North Pacific Intermediate water dominate the western part of the Indonesian Archipelago. Furthermore its the depth increases, the features of the North Pacific sourced water masses become more obvious. In the eastern part of the waters, high salinity South Pacific subsurface water is blocked by a strong salinity front between Halmahera and New Guinea. Intermediate water in the eastern interior region owns salinity higher than the North Pacific intermediate water and the antarctic intermediate water (AAIW), possibly coming from the vertical mixing between subsurface water and the AAIW from the Pacific Ocean, and possibly coming front the northward extending of the AAIW front the Indian Ocean as well.