144 resultados para trophic segregation
Resumo:
Extracellular phosphatases are an important part of the phosphorus cycle in aquatic environments. Phosphatase activity (PA) in plankton was studied in seven subtropical shallow lakes of different exploitation management and trophic status in the urban area of Wuhan City. Bulk PA was rather high (range 1.1-11 mu mol l(-1) h(-1)), although concentrations of soluble reactive phosphorus (SRP) were also high (range 27 mu g P l(-1) to similar to 1.5 mg P l(-1)) in all lakes. Cell-associated extracellular PA in phytoplankton was detected using the fluorescence-labelled enzyme activity technique. Phytoplankton species partly contributed to the bulk PA. We found explicit differences in the presence of cell-associated phosphatase within the main phytoplankton groups; species belonging to Chlorophyta and Dinophyta were regularly phosphatase-positive, while Cyanophyta and Bacillariophyceae were phosphatase-negative in all but one case. Furthermore, there is a certain potential of extracellular phosphatases produced by heterotrophic nanoflagellates in most of the lakes. This new finding compromises the 'traditional' interpretation of bulk phosphatase data as being due to overall phytoplankton or bacterial P regeneration.
Resumo:
Classical cultivation and molecular methods based on the ammonia monooxygenase gene (amoA) were used to study the abundance and diversity of beta-proteobacterial ammonia-oxidizing bacteria (AOB) in lake sediments. The eutrophic and oligotrophic basins of a Chinese shallow lake (Lake Donghu), in terms of ammonium (NH4+) concentrations, were sampled. The AOB number was significantly lower in the oligotrophic basin, but significantly higher in the eutrophic basin. In addition, using restriction fragment length polymorphism targeting the amoA, ten restriction patterns including six unique ones were found in the eutrophic basin, while five patterns were observed in the oligotrophic basin with only one unique restriction group. Phylogenetic analysis for AOB revealed that Nitrosomonas oligotropha- and Nitrosomonas ureae-related AOB and Nitrosospira-affiliated AOB were ubiquitous; the former dominated in the eutrophic basin (87.2%), while the latter dominated in the oligotrophic basin (65.5%). Furthermore, Nitrosomonas communis-related AOB was only detected in the eutrophic basin, at a small proportion (3.2%). These results indicate significant selection and adaptation of sediment AOB in lakes with differing trophic status. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper, accumulation and distribution of microcystins (MCs) was examined monthly in six species of fish with different trophic levels in Meiliang Bay, Lake Taihu, China, from June to November 2005, Microcystins were analyzed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). Average recoveries of spiked fish samples were 67.7% for MC-RR, 85.3% for MC-YR, and 88.6% for MC-LR. The MCs (MC-RR+MC-YR+MC-LR) concentration in liver and gut content was highest in phytoplanktivorous fish, followed by omnivorous fish, and was lowest in carnivorous fish; while MCs concentration in muscle was highest in omnivorous fish, followed by phytoplanktivorous fish, and was lowest in carnivorous fish. This is the first study reporting MCs accumulation in the gonad of fish in field. The main uptake of MC-YR in fish seems to be through the gills from the dissolved MCs. The WHO limit for tolerable daily intake was exceeded only in common carp muscle. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A vipp1 mutant of Synechocystis sp. PCC 6803 could not be completely segregated under either mixotrophic or heterotrophic conditions. A vipp1 gene with a copper-regulated promoter (P-petE-vipp1) was integrated into a neutral platform in the genome of the merodiploid mutant. The copper-induced expression of P-petE-vipp1 allowed a complete segregation of the vipp1 mutant and observation of the phenotype of Synechocystis 6803 with different levels of vesicle-inducing protein in plastids 1 (Vipp1). When P-petE-vipp1 was turned off by copper deprivation, Synechocystis lost Vipp1 and photosynthetic activity almost simultaneously, and at a later stage, thylakoid membranes and cell viability. The photosystem II (PSII)-mediated electron transfer was much more rapidly reduced than the PSI-mediated electron transfer. By testing a series of concentrations, we found that P-petE-vipp1 cells grown in medium with 0.025 mu M Cu2+ showed no reduction of thylakoid membranes, but greatly reduced photosynthetic activity and viability. These results suggested that in contrast to a previous report, the loss of photosynthetic activity may not have been due to the loss of thylakoid membranes, but may have been caused more directly by the loss of Vipp1 in Synechocystis 6803.
Resumo:
We reported diet fluctuation in isotopic composition of surface seston from two connected lakes in China, oligotrophic Lake Fuxian and eutrophic Lake Xingyun. The decrease in nighttime and the increase in daytime of isotope signatures of seston might be attributed to the light-dependent balance between the photosynthesis and the respiration of phytoplankton and to the changes in the species composition and the relative abundance of phytoplankton functional groups at the water's surface in diel growth. The relatively high isotopic signatures and the large-extent diel fluctuation of phytoplankton in the eutrophic lake could be due to utilization of heavy-isotope-enriched inorganic sources and the high primary productivity. Extent of diel fluctuation in delta C-13 and delta N-15 of phytoplankton were relatively small compared with the isotopic enrichment per trophic transfer and thus might have negligible effect on the source identification and the trophic evaluation of consumers.
Resumo:
This Study was conducted in Lake Dongtinghu, a large river-connected lake on the Yangtze River flood-plain, China. Our goal was to determine trophic relationships among benthic macroinvertebrates, as well as the effects of flood disturbance on the benthic food web of a river-connected lake. Macroinvertebrates in the lake fed mainly on detritus and plankton (both zooplankton and phytoplankton). Food web Structure in Lake Dongtinghu was characterized by molluscs as the dominant group, low connectance, high level of omnivory. based oil detritus and primary production, and most ingestion concentrating on a few links. Our analyses showed that flood disturbance is an important factor affecting the benthic food web in Lake Dongtinghu. The numbers of species and functional feeding groups (FFGs), and the density and biomass of macroinvertebrates decreased significantly during flooding. Connectance was higher during the flood season than in other seasons, indicating that floods have a strong effect on connectance in this Yangtze River-connected lake. Flood effects on the benthic web were also evident in the decrease of niche overlaps within and anion, FFGs. Our results provide useful information regarding biodiversity conservation on the Yangtze floodplain. Reconstructing and maintaining natural and regular flow regimes between Yangtze lakes and the river is essential for restoration of macroinvertebrates on the floodplain.
Resumo:
Silver and bighead carps were cultured in large fish pens to reduce the risks of cyanobacterial bloom outbreaks in Meiliang Bay, Lake Tauhu in 2004 and 2005. Diet compositions and growth rates of the carps were studied from April to November each year. Both carp species fed mainly on zooplankton (> 50% in diet) in 2004 when competition was low, but selected more phytoplankton in 2005 when competition was high. Silver carp had a broader diet breadth than did bighead carp. Higher densities and fewer food resources increased diet breadths but decreased the diet overlap in both types of carps. It can be predicted that silver and bighead carps would be released from diet competition and shift to feed mainly on zooplankton at low densities, decreasing the efficiency of controlling cyanobacterial blooms. Conclusively, when silver and bighead carps are used to control cyanobacterial blooms, a sufficiently high stocking density is very important for a successful practice.
Resumo:
Investigations of protozoa were carried out during four surveys of East Dongting Lake, China. A total of 160 protozoan species belonging to 71 genera was identified, of which 53 were flagellates, 37 sarcodines, and 70 ciliates. Among them, Peritrichida (32.6% of frequency), Arcellinida (16.2%), Volvocales (13.61/6), Peridiniales (13.1%), and Chrysomonadales (9.1%) were the main groups and contributed to 84.5% of the overall species. Ciliates were mainly composed of sessile species and small species. The total protozoan abundance varied from 2,400 cells L-1 to 20,250 cells L-1. The highest protozoan abundance occurred in spring; the lowest number was in autumn. The highest abundance of ciliates occurred in spring and winter, whereas flagellates developed the highest abundance in,summer and autumn. Pearson correlation analysis and linear regressions indicated that chlorophyll a and water velocity were the main factors affecting ternporal and spatial variations of the protozoan abundance.
Resumo:
Carbon stable isotope analysis of surface bloom scum and subsurface seston samples was conducted in shallow eutrophic lakes in China during warm seasons from 2003 to 2004. delta C-13 values of bloom scum were always higher (averaged 5 parts per thousand) than those of seston in this study, and the possible reasons were attributed to (i) direct use of atmospheric CO2 at the air-water interface, (ii) decrease in C-13 fractionation due to higher carbon fixation, (iii) active CO2 transport, and/or (iv) HCO3 accumulation. Negative correlation between delta C-13(scum) - delta C-13(seston) and pH in the test lakes indicated that phytoplankton at the subsurface water column increased isotopic enrichment under the-carbon limitation along with the increase of pH, which might in turn decreased the differences in 313 C between the subsurface seston and the surface scums. Significant positive correlations of seston 8 13C with total concentrations of nitrogen and phosphorus in water column suggested that the increase in delta C-13 of seston with trophic state was depending on nutrient (N or P, or both) supply. Our study showed that delta C-13 of phytoplankton was indicative of carbon utilization, primary productivity, and nutrient supply among the eutrophic lakes. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.
Resumo:
Temporal and spatial changes in delta(13) C and delta 15 N of particulate organic matter (POM) and Hemiculter leucisculus were studied in the Yangtze River of China. Isotopic signatures of POM showed seasonal variations, which was assumed to be associated with allochthonous organic input and autochthonous phytoplankton growth. delta C-13 of H. leucisculus was 1.1 % higher than that of POM, which suggested that the food source of H. leucisculus was mostly from the POM. A mass balance model indicated the trophic position of H. leucisculus in the food web of Yangtze River was estimated to be 2.0 - 2.1, indicating that this fish mainly feeds on planktonic organic matter, which agreed with previous gut content analysis.
Resumo:
We investigated differences in delta N-15 of seston and icefishes from seven freshwater ecosystems with different trophic states in China. An increase of seston delta N-15 values was accompanied by an increase of total nitrogen and phosphorus concentrations. Significantly positive correlations were observed between delta N-15 of icefishes and delta N-15 of seston, total nitrogen and phosphorus concentrations. This study demonstrated that icefishes could be preferred indicators of anthropogenic contamination in test systems because they integrated waste inputs over long time periods and reflected the movement of waste through the pelagic food chain.
Resumo:
This paper reports large variations in stable carbon and nitrogen isotope ratios of lake anchovy (Coilia ectenes taihuensis) from Lake Chaohu, China. The lake anchovy exhibited a significant C-13- and N-15- enrichment in relation to increasing fish length, and the isotopic compositions of small lake anchovy (<= 130 mm) were significantly more enriched than those of large lake anchovy (> 130 mm). The significant differences in the isotopic compositions of small and large lake anchovy suggested that their assimilated diets differed over a period of time and reflected the size-related diet shift of this fish. Bellamya aeruginosa and Corbicula fluminea were used to establish the baseline carbon signal of benthic and pelagic food webs, and these data were used to parameterize a 2-source mixing model to estimate in consumers the contribution of carbon derived from benthic versus pelagic food webs. Mixing models showed that small lake anchovy derived only 37% of their carbon from benthic food web, indicating increased reliance on pelagic prey, whereas benthic prey contributed 71% of large lake anchovy diet, suggesting greater use of benthic sources. These data indicate that there was a change in lake anchovy feeding strategy related to their size, suggesting a role in dynamic coupling between pelagic and benthic food chains. The trophic position of small lake anchovy averaged 3.0, indicating a zooplankton-based diet, compared with 3.6 in large lake anchovy, indicative of an increase in piscivorous diet. Overlap in the isotopic compositions of small and large lake anchovy probably indicated that these fish occasionally shared common diets, as suggested by stomach content studies, and/or resulted from the differences in the rate of isotopic turnover depending on differences in growth rate and metabolic turnover between small and large anchovy during diet shift from pelagic to benthic food webs. This study presents the contributions of benthic and pelagic food webs supporting lake anchovy and indicates that the intraspecific isotopic dynamic should be considered when applying stable isotope analyses to infer trophic interactions in aquatic ecosystems.
Resumo:
Genetic linkage maps were constructed for large yellow croaker Pseudosciaena crocea (Richardson, 1846) using AFLP and microsatellite markers in an F-1 family. Five hundred and twenty-three AFLP markers and 36 microsatellites were genotyped in the parents and 94 F-1 progeny. Among these, 362 AFLP markers and 13 SSR markers followed the 1:1 Mendelian segregation ratio (P > 0.05). The female genetic map contained 181 AFLP and 7 microsatellite markers forming 24 linkage groups spanning 2959.1 cM, while the male map consisted of 153 AFLP and 8 microsatellite markers in 23 linkage groups covering 2205.7 cM. One sex linked marker was mapped to the male map and co-segregated with the AFLP marker agacta355, suggesting an XY-male determination mechanism and this may be useful in the breeding of monosex populations. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The changes of NH3-N, NO3-N, NO2-N and TN/TP were studied during growth and non-growth season in 33 subtropical shallow lakes in the middle and lower reaches of the Yangtze River. There were significant positive correlations among all nutrient concentrations, and the correlations were better in growth season than in non-growth season. When TP > 0.1 mgL(-1), NH3-N increased sharply in non-growth season with increasing TP, and NO3-N increased in growth season but decreased in non-growth season with TP. These might be attributed to lower dissolved oxygen and low temperature in non-growth season of the hypereutrophic lakes, since nitrification is more sensitive to dissolved oxygen and temperature than anti nitrification. When 0.1 mgL(-1)> TP > 0.035 mgL(-1), TN and all kinds of inorganic nitrogen were lower in growth season than in non-growth season, and phytoplankton might be the vital regulating factor. When TP < 0.035 mgL(-1), inorganic nitrogen concentrations were relatively low and NH3-N, NO2-N had significant correlations with phytoplankton, indicating that NH3-N and NO2-N might be limiting factors to phytoplankton. In addition, TN/TP went down with decline in TIP concentration, and TN and inorganic nitrogen concentrations were obviously lower in growth season than in non-growth season, suggesting that decreasing nitrogen (especially NH3-N and NO3-N) was an important reason for the decreasing TN/TP in growth season. The ranges of TN/TP were closely related to trophic level in both growth and non-growth seasons, and it is apparent that in the eutrophic and hypertrophic state the TN/TP ratio was obviously lower in growth season than in non-growth season. The changes of the TN/TP ratio were closely correlated with trophic levels, and both declines of TN in the water column and TP release from the sediment were important factors for the decline of the TN/TP ratio in growth season.