115 resultados para superoxide dismutase (SOD)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

对虾病害在世界范围内的广泛传播,给水产养殖和沿海农村经济造成了重大损失。深入开展对虾免疫机制研究并在此基础上寻找对虾疾病防治的有效方法已成为当务之急。研究表明,当对虾等甲壳动物受到外界病原刺激时,其体内的吞噬细胞在吞噬活动中会激活磷酸己糖支路的代谢,引起呼吸爆发,产生多种活性氧分子。另外,受到病原侵染的对虾还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发大量活性氧的产生。这些活性氧分子可以杀灭入侵的病原微生物,但同时由于活性氧分子反应的非特异性,它们也会对宿主的细胞、组织和器官造成严重伤害,进而导致对虾生理机能的损伤和免疫系统的破坏。所以,消除对虾体内因过度免疫反应产生的过量氧自由基将能够增强其抵御病原侵染的能力,提高免疫力。本论文从中国明对虾体内克隆了线粒体型超氧化物歧化酶(mMnSOD)、胞质型超氧化物歧化酶(cMnSOD)、过氧化氢酶(Catalase)和过氧化物还原酶(Peroxiredoxin)等四种与免疫系统相关的抗氧化酶基因,分析了它们的分子结构特征,组织分布及应答不同病原刺激的表达变化模式,并对其中的mMnSOD基因和Peroxiredoxin基因进行了体外重组表达、分离纯化和酶活性分析。 采用RACE技术从中国明对虾血细胞中克隆了两个超氧化物歧化酶(SOD)基因,通过序列比对分析发现,其中一个为mMnSOD基因,另一个为cMnSOD基因。mMnSOD基因的cDNA全长为1185个碱基,其中开放阅读框为660个碱基,编码220个氨基酸,其中推测的信号肽为20个氨基酸。多序列比对结果显示中国明对虾mMnSOD基因的推导氨基酸序列与罗氏沼虾、蓝蟹的推导氨基酸序列同源性分别为88%和82%。Northern blot结果表明,该基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。半定量RT-PCR结果显示,对虾感染病毒3 h时,该基因在血细胞和肝胰脏中的转录水平显著升高。此外,通过构建原核表达载体,本研究对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活分析。cMnSOD基因的cDNA全长为1284个碱基,其中开放阅读框为861个碱基,编码287个氨基酸。多序列比对结果显示中国明对虾cMnSOD基因的推导氨基酸序列与斑节对虾和凡纳滨对虾的同源性高达98%和94%。组织半定量结果显示,cMnSOD基因在对虾被检测的各个组织中均有表达。 另外,半定量RT-PCR结果表明,对虾感染病毒23h时,该基因在肝胰脏中的转录上升到正常水平的3.5倍;而感染后59 h时,该基因在血细胞中的转录上升到正常水平的2.5倍。 利用根据其他生物过氧化氢酶保守氨基酸序列设计的简并引物,结合RACE技术,从中国明对虾肝胰脏中克隆到了过氧化氢酶基因的部分片段,片段长1725个碱基。多序列比对结果发现目前所得中国明对虾Catalase基因部分片段的推导氨基酸序列与罗氏沼虾和皱纹盘鲍Catalase氨基酸序列的同源性分别达到95%和73%。通过实时荧光定量PCR技术对中国明对虾Catalase基因在各个组织中的分布情况及病毒感染后该基因在血细胞和肝胰脏中的转录变化进行了研究。结果发现,该基因在肝胰脏、鳃、肠和血细胞中表达水平较高,在卵巢、淋巴器官和肌肉中的表达水平相对较弱;感染病毒23 h和37 h时,对虾血细胞和肝胰脏中该基因mRNA的表达量分别出现显著性上升。 依据中国明对虾头胸部cDNA文库提供的部分片段信息,结合SMART-RACE技术,从中国明对虾肝胰脏中克隆到了过氧化物还原酶基因(Peroxiredoxin), 该基因的cDNA全长为942个碱基,其中开放阅读框为594个碱基,编码198个氨基酸。中国明对虾Peroxiredoxin基因的推断氨基酸序列与伊蚊、文昌鱼和果蝇等Peroxiredoxin基因的推断氨基酸序列同源性分别为77%、76%和73%。其蛋白理论分子量为22041.17 Da,pI为5.17。Northern blot结果表明,Peroxiredoxin基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。实时荧光定量PCR结果显示,弧菌感染后,该基因在对虾血细胞和肝胰脏中的转录水平都有明显变化并且表达模式不同。另外,对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活性分析。酶活性分析表明,复性后的重组蛋白能在DTT存在的条件下还原H2O2。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

海湾扇贝Argopecten irradian Lamarck于1982年从美国引种到中国,由于具有较快的生长速度和很高的经济效益,海湾扇贝成为中国最主要的养殖贝类之一。近年来海湾扇贝养殖遇到了死亡率高等问题,深入开展海湾扇贝功能基因的研究,尤其是免疫相关基因及其机制研究并在此基础上寻找扇贝疾病防治的有效方法对海湾扇贝的健康养殖十分重要。 对于贝类免疫系统来说,其血细胞在先天性免疫防御中起着重要的作用。当受到外界病原侵染时,贝类血细胞的一个重要免疫反应就是吞噬作用。在吞噬病原过程中,受到病原侵染的贝类还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发与呼吸链相耦联的活性氧(ROS)的大量产生。这些活性氧具有极强的反应特性,能破坏病原微生物的结构和功能分子,实现对入侵病原的杀灭。利用活性氧对被吞噬的病原进行杀灭,这是吞噬作用消除病原抵御侵染的重要机制。但由于活性氧分子反应的非特异性,它们也会破坏宿主机体细胞内的功能蛋白分子、不饱和脂肪酸分子和核酸等,对细胞造成严重的伤害,进而导致机体生理机能的损伤和免疫系统的破坏。所以,及时消除病原感染机体内过量产生的ROS,维持相关细胞的正常代谢,对提高机体抵抗力和免疫力具有重要的作用。O2-是生物体内产生的第一种活性氧分子,其他的活性氧分子也是由它衍生而来,消除过量O2-是消除过量活性氧危害的第一步也是关键一步。生物体内,超氧化物歧化酶(SOD)是催化O2-发生歧化反应,消除O2-的关键酶。 首先,本文通过RACE方法获得了海湾扇贝SOD家族全部三种基因的cDNA全长并对其进行了序列的生物信息学分析,海湾扇贝AiCuZnSOD全长cDNA为1047个碱基,其中开放阅读框为459个碱基,编码152个氨基酸,与栉孔扇贝Chlamys farreri的CuZnSOD相似度为77.5%,与长牡蛎Crassostrea gigas的相似度为75%,与人的相似度为74.7%。AiMnSOD全长cDNA为1207个碱基,其中开放阅读框为678个碱基,编码226个氨基酸,序列比对结果发现AiMnSOD的氨基酸序列与虾夷扇贝Mizuhopecten yessoensis和皱纹盘鲍Haliotis discus hannai的相似度分别为85%和78.4%,与哺乳动物相似度也在68%~72%之间。AiECSOD全长cDNA为893个碱基,其中开放阅读框为657个碱基,编码218个氨基酸。AiECSOD与其它物种ECSOD相似度比较低。与线虫Brugia pahangi的相似度为27.9%,与疟蚊Anopheles gambiae的相似度为31.4%,与斑马鱼Danio rerio的相似度为27.8%,与人的相似度也只有28.6%,与同是贝类的长牡蛎ECSOD也只有28.1%的相似性。主要原因是AiECSOD的信号肽和肝磷脂结合区域在各物种中无同源性。 其次,采用qRT-PCR(quantitative real time PCR)方法分析三种SOD基因在不同组织中的表达情况,结果表明三种SOD基因的组织表达有所差异。AiCuZnSOD基因在鳃中表达水平最高,其次是血细胞和性腺,在外套膜、闭壳肌和肝胰脏表达水平较低。AiMnSOD基因在鳃中表达水平最高,其次是外套膜,在血细胞、性腺,而在肝胰脏和闭壳肌表达较弱。AiECSOD基因在血细胞中表达水平最高,其次是肝胰脏,在鳃、闭壳肌表达水平较低,而性腺和外套膜没有检测到。同时,采用qRT-PCR对鳗弧菌Vibrio angullarum感染后海湾扇贝血细胞中三种SOD基因mRNA表达变化进行了检测。AiCuZnSOD表达量在各个时间段没有显著差异(P > 0.05)。AiMnSOD的表达量在1.5 h时略有下降,在3 h时达到最高表达量,是空白组(0h)的3倍(P < 0.01),从6 h到24 h表达量逐渐下降,24 h时表达量是空白组的1.6倍,24 h到48 h又稍有升高。AiECSOD的表达量在1.5 h时有所下降,是空白组的0.3倍(P < 0.05),随后逐渐升高,在12 h时达到最高表达量,是空白组(0h)的4.5倍(P < 0.01),从24 h到48 h表达量逐渐下降并恢复到空白组的水平。在对照组,各个时间点没有显著差异(P > 0.05)。在鳗弧菌感染后,海湾扇贝三种SOD的表达并不一致,且差异比较显著。AiCuZnSOD被认为是构成性表达基因,其受外界刺激的影响最小,AiMnSOD和AiECSOD受刺激后表达上调比较明显。 第三,采用Genome-walking的方法得到了海湾扇贝三种SOD基因的基因组全长和近端启动子序列并对其进行了相关分析。AiCuZnSOD的基因组序列全长为4279bp,包含有4个外显子和3个内含子。AiMnSOD的基因组序列全长为10692bp,包含有4个外显子和3个内含子。AiECSOD的基因组序列全长为5276bp,包含有5个外显子和4个内含子。三种基因外显子和内含子的结合处序列遵循-AT/GT-原则。我们把海湾扇贝SOD家族的三个基因的近端启动子进行了比较分析。发现三种SOD在靠近起始密码子的位置都有Oct-1结合位点。三种SOD共有的转录位点有:Oct-1、C/EBPalp、Oct2.1、Sp-1和GATA-1。AiCuZnSOD和AiMnSOD共有的转录位点有:ICSBP、Ftz、TATA-box、C/EBPbeta和Antp。AiCuZnSOD和AiECSOD共有的转录位点有:AP-1和NFκB。AiMnSOD和AiECSOD共有的转录位点有:GR和ER。AiCuZnSOD独有的位点有:SRF、YY-1和NF-1。AiMnSOD独有的位点有:HNF-1、Hb、MEB、NF-muE1、Pit-1a和Eve。AiECSOD独有的位点有:CREB、RATA-alph、Kruppel-like和AP-3。 此外,通过构建原核表达载体,本研究对AiCuZnSOD和AiECSOD基因进行了体外重组表达,并对纯化的重组蛋白进行了酶活分析。酶活分析表明,重组AiCuZnSOD蛋白有较高的酶活和稳定性。 最后,我们对海湾扇贝三种SOD基因的部分区域,包括启动子、编码区,部分内含子区域进行了SNP检测,并对SOD基因部分SNP位点多态性和鳗弧菌敏感性进行了相关分析。三种SOD基因中,我们共发现了59个SNP位点,其中AiECSOD的SNP位点最多,特别是在启动子区,AiCuZnSOD和AiMnSOD多态性较低。其中AiCuZnSOD启动子区的-1739 T-C 位点的基因型和等位基因,AiECSOD启动子区的-498 A-T和-267 G-A等位基因频率,AiECSOD的第一个外显子38 Thr-Lys的多态性在敏感和抗菌群体中存在显著差异(P < 0.05)。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aestivation is an indispensable state in the life history of sea cucumbers, Apostichopus japonicus. The immune characteristics of the coelomic fluid of A. japonicus, were investigated during aestivation. Samples were collected between July and November 2006 from a coastal pond located off the Yellow Sea in Jiaonan, Shandong Province, China. The total coelomocytes counts (TCC), total superoxide dismutase (T-SOD), catalase (CAT), myeloperoxidase (MPO), and lysozyme (IZM) in the coelomic fluid were measured. The activities of catecholamines, [adrenaline (AD), noradrenaline (NA), and dopamine (DOP)] were estimated. TCC decreased from July to September, indicating weakness of the cellular immune activity at that time. Activities of SOD, CAT, MPO, and LZM changed significantly from July to October. Catecholamines AD and NA in coelomic fluid were significantly higher on August 21 and November 27. There was no significant variation in DOP during the sampling period. Thus, immune characters in coelomic fluid of A. japonicus changed significantly during aestivation. Water temperature was significantly and negatively correlated with TCC, and salinity was significantly and positively correlated with AD and NA. The mechanism of aestivation in A. japonicus is complex and might not be attributed only to environmental changes, such as temperature and salinity, as shown in previous studies. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Both in-field chemical investigation and in the laboratory toxic tests were carried out to systematically understand the pollution status of cadmium (Cd) and zinc (Zn) in Bohai Bay. Samples collected from surface seawater were determined to describe the distributions of Cd and Zn in Bohai Bay. The average values in our study of Cd and Zn were 0.15 mu g/L and 19.68 mu g/L, respectively. Both of them were lower than the first class limit of seawater quality standard in China. In the laboratory, antioxidant enzymes [SOD (Cu/Zn-SOD, Mn-SOD), CAT], lipid peroxidation (MDA), phase I and phase II enzymes (CYP4501A and GST) were investigated in the bivalves Chlamys farreri exposed to Cd and Zn at the concentration levels of Bohai Bay seawater, which were obtained from our in-field investigation. The reduced SOD, CAT, and EROD (7-ethoxyresorufin-O-deethylase) activities (with the inhibitory rate of 16.8%, 31.5%, and 51.6%, respectively) in Cd treatment were observed and resulted in obvious lipid peroxidation damage. However, treatment of Zn showed elevations in SOD and GST by 13.3% and 29.9%, respectively, and with no influence on lipid peroxidation. In summary, seawater quality in Bohai Bay seawater was ranked as good in general, but it seemed that Cd might possess a potential environmental risk by effecting pro-oxidant/antioxidant balance and phase I detoxification in C. farreri.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

  果实为开花植物所特有的发育器官,在种子的成熟和传播过程中发挥着重要作用。同时,肉质果实中含有丰富的营养物质,包括纤维素、维生素、抗氧化剂等,成为人们饮食的重要组成部分。由于果实的成熟衰老和抗病性直接影响果品的质量和市场价值,因此,研究果实成熟衰老和抗病性的调控机制具有重要的理论意义和应用前景。本文主要利用蛋白质组学的方法,探讨外源化学物质抑制果实成熟衰老和诱导抗病性的调控机制。 1. 硅对果实的抗病性诱导:用硅酸钠(1%)处理采后的甜樱桃果实,再接种褐腐病原菌(Molinilia fracticola),置于20C下,观测贮藏期间果实的发病率,并分析硅处理后诱导的主要蛋白质及调控机制。研究结果表明:硅酸钠处理可显著抑制贮藏期间褐腐病的发生,其抑病机理与硅诱导PR-蛋白的表达,提高果实的抗氧化水平,减轻由病原菌侵染造成的氧化胁迫相关。同时,硅处理还能保护细胞骨架结构,有利于增强果实对病原菌入侵的抵抗力。 2. 水杨酸对果实的抗病性诱导:用水杨酸(SA,2mM)在果园处理三种成熟度的甜樱桃果实,然后接种青霉病原菌(Penicillium expansum)观察其发病情况,并取样分析参与抗病性应答的主要蛋白质及调控机制。试验结果表明:SA处理能显著降低青霉病的发病率和抑制病斑扩展,而且SA对低成熟度甜樱桃果实的抗性诱导效果更好。在八成熟的果实中,有5个热激蛋白和4个脱氢酶蛋白被SA诱导,这些蛋白参与了糖酵解和三羧酸循环。抗氧化蛋白和PR蛋白主要参与较低成熟度果实的抗性应答,而热激蛋白和脱氢酶在较高成熟度果实的抗性应答中更明显,SA诱导的抗性与代谢途径相关。   3. 草酸对果实的抗性诱导:用5mM的草酸处理冬枣果实后,接种青霉菌(P. expansum),观察果实发病情况,测定果实相关的生理指标,分析参与果实抗性应答的主要蛋白质及调控机制。结果表明:草酸能明显延缓冬枣果实的衰老,提高果实对青霉菌的抗性。草酸处理能抑制果实乙烯的释放量和呼吸强度,延缓叶绿素的降解,减少乙醇积累。利用蛋白质组学的研究方法证实了在25个参与了草酸处理应答的蛋白中,胱硫醚-β-合酶结构域包含蛋白(CBB domain-containing protein)和3个与光合作用相关蛋白[二磷酸核酮糖羧化酶/加氧酶(Ribulose bisphosphate carboxylase/oxygenase activase, chloroplast precursor),二磷酸核酮糖羧化酶/加氧酶大亚基结合蛋白(RuBisCO large subunit-binding protein subunit beta, chloroplast precursor),植物光系统Ⅱ放氧复合蛋白2(PSII oxygen-evolving complex protein 2)]的表达量上调,乙醇脱氢酶的表达量出现下调。草酸处理还提高了与乙烯合成前体相关蛋白的表达,抑制了ACC合成酶的活性。草酸提高果实抗病的机制与延缓果实成熟衰老和保持果实抗性有关。 4. 果实衰老的调控机制:采用高氧(100%)和低氧(2-3%)处理苹果果实,观察果实衰老的进程,并基于蛋白质组学的研究方法,探讨苹果果实衰老与线粒体蛋白质组的关系。结果表明,在苹果衰老过程中有22个蛋白的表达量发生变化,这些蛋白主要参与了三羧酸循环,电子传递,碳代谢和胁迫应答。高氧处理能诱导氧化胁迫,加速了果实的衰老。质谱鉴定结果证明:在高氧胁迫下,超氧化物歧化酶(manganese superoxide dismutase,MnSOD)和线粒体外膜通道蛋白(porin) 的表达量降低,MnSOD的活性受到抑制,由此提高了线粒体中超氧阴离子的含量,增加了蛋白质的氧化损伤。 此外,高氧处理改变了porin的功能,导致了线粒体膜的透势发生变化,从而引起外膜损伤。由此阐明了活性氧在果实的成熟衰老调控中的重要作用。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxiclase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxiclase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxiclase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the Survival of M. vaginatus. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study was conducted to investigate time-dependent changes in oxidative enzymes in liver of crucian carp after intraperitoneally injection with extracted microcystins 600 and 150 mu g kg(-1) body weight. The results showed that activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase generally exhibited a rapid increase in early phase (1-3 h post injection), but gradually decreased afterwards (12-48 h) compared with the control, with an evident time-dependent effect. These zigzag changes over time contributed a better understanding on oxidative stress caused by microcystins in fish.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 68-day growth trial was conducted in a flow-through system to determine the effect of dietary manganese levels on growth and tissue manganese concentration of juvenile gibel carp (Carassius auratus gibelio). Seven purified diets containing 7.21, 8.46, 9.50, 10.50, 13.03, 19.72 and 22.17 mg manganese (as manganic sulfate) per kilogram diet were fed to triplicate groups of fish (initial weight 3.21 +/- 0.01 g). The results showed that dietary manganese levels did not significantly affect feed intake of the fish. Specific growth rate, feed efficiency, total hepatic superoxide dismutase activity, carcass and skeletal manganese concentration increased significantly with increased dietary manganese(P < 0.05) while condition factor decreased significantly(P < 0.05). It was concluded that dietary requirement of manganese was 13.77 mg Mn per kilogram diet. Carcass and skeletal manganese concentration could also be used to evaluate the manganese requirement. Total hepatic superoxide dismulase activity was not a sensitive indicator for dietary requirement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, female Chinese rare minnows (Gobiocypris rarus) were used as in vivo models and exposed to nonylphenol (NP) at concentrations of 1 to 200 mu g/L for 21 d under semistatic conditions. Molecular biomarkers of oxidative stress were measured in unfertilized eggs and included reactive oxygen species (ROS), lipid peroxidation products (thiobarbituric acid-reactive substances [TBARS] and protein carbonyl), superoxide dismutase activity, and glutathione. Cathepsin D activity as an indicator of egg viability also was assayed. Nonylphenol induced ROS formation in unfertilized eggs in all exposed groups compared to the controls. The levels of protein carbonyl and TBARS in unfertilized eggs were significantly increased (p < 0.05) at 10 to 200 and 100 to 200 mu g/L, respectively. Good positive correlations were shown between ROS induction and levels of TBARS and protein carbonyl in eggs (R = 0.918, p < 0.05 and R = 0.784, p < 0.05, respectively). Superoxide dismutase activity in eggs was significantly inhibited (p < 0.05) in the 50 to 200 mu g/L exposure groups. Glutathione levels in eggs were significantly depleted (p < 0.05) at 100 to 200 mu g/L concentrations. In addition, ROS induction resulted in oxidative damage to lipid and protein in chorions. Significant reductions (p < 0.05) of the protein and lipid contents in chorions were both found in the 50 to 200 mu g/L exposure groups. A previous study found that NP exposure could lead to chorion thinning in zebra fish. Thus, the reductions in protein and lipid contents in chorion could be the reason for chorion thinning by NP exposure. Meanwhile, cathepsin D activity was significantly inhibited (p < 0.05) in all exposure groups. The results demonstrated that NP-induced oxidative stress could damage the chorion of unfertilized eggs and lead to a decline in gamete quality in female Chinese rare minnow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nostoc sphaeroides Kuetzing has been used as a traditional medicine in China to treat a variety of ailments. This research identified the antioxidant activities of polysaccharide extract from Nostoc sphaeroides. The extract, which contains 46.2% carbohydrates, exhibited an effective scavenging capability on superoxide radical, hydroxyl radicals in non site-specific as well as site-specific assays, and also performed lipid peroxidation inhibition in a dose-dependent manner. Polysaccharide extract had no 1,1-diphenyl-2-picrylhydrazyl radical scavenging potential at all test concentrations. Activities of superoxide dismutase, catalase, and glutathione peroxidase in human embryo kidney 293 cells were increased effectively when Nostoc sphaeroides extract was applied. These results suggested that the use of N. sphaeroides in treating ailments may be based on the antioxidant capacities of polysaccharide composition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 11-week growth trial was conducted in a flow-through system with juvenile gibel carp Carassius auratus gibelio to evaluate the effects of gradual replacement of fish meal (FM) by meat and bone meal (MBM) on growth performance, phosphorus (P) and nitrogen (N) loading. Six isonitrogenous (crude protein: 410 g kg(-1)) and isoenergetic (gross energy: 18 kJ g(-1)) diets were formulated. FM was used as the control protein. In the other five diets, 20, 40, 60, 80 and 100% FM protein was substituted with MBM20, MBM40, MBM60, MBM80, MBM100, respectively. Total P content in the diets ranged from 16.0 to 28.3 g kg(-1) and the available P was 5.0-6.6 g kg(-1). The results showed that the best growth was achieved with fish fed on the control diet and MBM20. Final body weight, weight gain, feed efficiency, protein retention efficiency and energy retention efficiency decreased with increased dietary MBM. No significant differences were found in the feeding rate and hepatosomatic index between the groups. Apparent digestibility coefficient (ADC) of dry matter, protein and P decreased with increase in dietary MBM, while there were no significant differences in the ADC of energy. P and N retention decreased linearly while P and N loading increased linearly with the increased dietary MBM levels. No significant differences were observed in the activity of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase, as well as pyruvate kinase in liver or in serum. Total superoxide dismutase activity in MBM20 was significantly higher than that of MBM100.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports a new method for detection of ROS scavengers including superoxide dismutase, ascorbic acid and glutathione based on a 'probe' of peroxidase-oxidase biochemical oscillator. The oscillation period and amplitude change with different concentrations of scavengers. The linear ranges of superoxide dismutase, ascorbic acid and glutathione are respectively 1.56 x 10(-4)-1.56 x 10(-3) mg mL(-1), 1.75 x 10(-7) -1.75 x 10(-5) mol L-1 and 9.38 x 10(-7) -7.5 x 10(-5) mol L-1. The selectivity, linearity and precision for superoxide dismutase, ascorbic acid, and glutathione are presented and discussed. The results compared well with other standard methods for determination of superoxide dismutase, ascorbic acid and glutathione. Some possible steps in the overall reaction mechanisms are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic diversity among four clones (A, D, E, F) of gynogenetic silver crucian carp was studied using transferrin and isozymes in the blood as markers. Of the five proteins investigated, three (transferrin, esterase and superoxide dismutase) indicated polymorphism and eight polymorphic loci were detected. These loci were probably encoded by codominant alleles and their inheritance patterns were analyzed. Intraclonal homogeneity and interclonal heterogeneity were observed in these clones, which allowed us to infer the clonal nature and evolutionary relationship between them. Clonal diversity in this population of silver crucian carp in China was also compared with data reported from gynogenetic crucian carp in Germany.