65 resultados para sulfur species and volatile fatty acids
Resumo:
A microchip electrophoresis method coupled with laser-induced fluorescence (LIF) detection was established for simultaneous determination of two kinds of intracellular signaling molecules (reactive oxygen species, ROS, and reduced glutathione, GSH) related to apoptosis and oxidative stress. As the probe dihydrorhodamine-123 (DHR123) can be converted intracellularly by ROS to the fluorescent rhodamine-123 (Rh123), and the probe naphthalene-2,3-dicarboxaldehyde (NDA) can react quickly with GSH to produce a fluorescent adduct, rapid determination of Rh-123 and GSH was achieved on a glass microchip within 27 s using a 20 mm borate buffer (pH 9.2). The established method was tested to measure the intracellular ROS and GSH levels in acute promyelocytic leukemia (APL)-derived NB4 cells. An elevation of intracellular ROS and depletion of GSH were observed in apoptotic N134 cells induced by arsenic trioxide (AS(2)O(3)) at low concentration (1-2 mu m). Buthionine sulfoximine (BSO), in combination with AS(2)O(3) enhanced the decrease of reduced GSH to a great extent. The combined treatment of AS(2)O(3) and hydrogen peroxide (H2O2) led to an inverse relationship between the concentrations of ROS and GSH obtained, showing the proposed method can readily evaluate the generation of ROS, which occurs simultaneously with the consumption of the inherent antioxidant.
Resumo:
The acid properties of Mo/HMCM-22 catalyst, which is the precursor form of the working catalyst for methane aromatization reaction, and the synergic effect between Mo species and acid sites were studied and characterized by various characterization techniques. It is concluded that Bronsted and Lewis acidities of HMCM-22 are modified due to the introduction of molybdenum. We suggest a monomer of Mo species is formed by the exchange of Mo species with the Bronsted acid sites. On the other hand, coordinate unsaturated sites (CUS) are suggested to be responsible for the formation of newly detected Lewis acid sites. Computer modelling is established and coupling with experimental results, it is then speculated that the effective activation of methane is properly accomplished on Mo species accommodated in the 12 MR supercages of MCM-22 zeolite whereas the Bronsted acid sites in the same channel system play a key role for the formation of benzene. A much more pronounced volcano-typed reactivity curve of the Mo/HMCM-22 catalysts, as compared with that of the Mo/HZSM-5, with respect to Mo loading is found and this can be well understood due to the unique channel structure of MCM-22 zeolite and synergic effect between Mo species and acid sites.
Resumo:
Silver is well known to show peculiar catalytic activities in several oxidation reactions. In the present paper, we investigate the catalytic activity of silver catalysts toward CO-gelective oxidation in H-2. XRD, TEM, TPD, and in situ FTIR techniques were used to characterize the catalysts. The pretreatment of the catalysts was found to have great influence on their performance. The pretreatment in 02 improves the activity of the silver catalyst, whereas He pretreatment at 700 degreesC or direct hydrogen pretreatment shows an inverse effect. Silver catalysts undergo massive structural change during oxygen pretreatment at high temperatures (> 500 degreesC), and there is solid evidence for the formation of subsurface oxygen species. The existence of this silver-subsurface oxygen structure facilitates the formation of active sites on silver catalysts for CO oxidation, which are related to the size, morphology, and exposed crystal planes of the silver particles. Its formation requires a certain temperature, and a higher pretreatment temperature with oxygen is required for the silver catalyst with a smaller particle size. It is observed, for the first time, that adsorbed CO on the surface of silver particles can directly react with subsurface oxygen species at low temperatures (e.g., RT), and the surface oxygen can migrate into and refill these subsurface sites after the consumption of subsurface oxygen by the reaction with CO. This finding provides a new reaction pathway for CO oxidation on silver catalyst. (C) 2004 Published by Elsevier Inc.