91 resultados para spatiotemporal distribution
Resumo:
The far-field intensity distribution (FFID) of a beam generated by a phase-unifying mirror resonator was investigated based on scalar diffraction theory. Attention was paid to the parameters, such as obscuration ratio and reflectivity of the phase-unifying mirror, that determine the FFID. All analyses were limited to the TEM00 fundamental mode. (c) 2005 Optical Society of America.
Resumo:
The far-field intensity distribution of hollow Gaussian beams was investigated based on scalar diffraction theory. An analytical expression of the M-2 factor of the beams was derived on the basis of the second-order moments. Moreover, numerical examples to illustrate our analytical results are given. (c) 2005 Optical Society of America.
Resumo:
Based on scalar diffraction theory, we investigated far-field intensity distribution (FFID) of beam generated by Gaussian mirror resonator. We found usable analytical expressions of diffracted field with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and radius of the Gaussian mirror, which determine the FFID. All analyses were limited to TEM00 fundamental mode. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigated M-2 factor and far-field distribution of beams generated by Gaussian mirror resonator. And we found usable analytical expressions of the M2 factor and the far-field distribution intensity with respect to variation of diffraction parameters. Particular attention was paid to the parameters such as mirror spot size and reflectance of the Gaussian mirror. (c) 2006 Elsevier GrnbH. All rights reserved.
Resumo:
Electric field distributions inside resonant reflection filters constructed using planar periodic waveguides are investigated in this paper. The electric fields may be intensified by resonance effects. Although the resonant reflection peaks can be quite narrow using weakly modulated planar periodic waveguides, the strong electric field enhancement limits their use in high-power laser systems. Strongly modulated waveguides may be used to reduce the electric field enhancement and a cover layer may be used to narrow the bandwidth at the same time. Desired results (i.e. almost no electric field enhancement together with narrow bandwidth) can be realized using this simple structure.